
RESEARCH ARTICLE

Optical soliton cooling with polynomial law of nonlinear refractive
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Abstract The aim of this work is to produce the effect of

optical soliton cooling with polynomial law of nonlinear

refractive index. This is achieved by the aid of soliton

perturbation theory. In this context, both Hamiltonian and

non-Hamiltonian type, including non-local type, perturba-

tion effects are considered.

Keywords Quasimonochromaticity � Soliton perturbation �
Polynomial law

Introduction

Advances in optical soliton dynamics have reached far and

beyond and its progress is beyond measure! There are a

wide variety of aspects in soliton dynamics that has been

touched upon during the past few decades. These include

soliton perturbation theory, establishment of conservation

laws, addressing highly dispersive solitons, numerical

studies with short pulses by Laplace substitution, Bragg

gratings, application of semi-inverse variational principle

and implementing variational iteration method and several

others [1–14]. It is quite noteworthy that research results

on optical soliton cooling are few and far

between [1, 4, 5, 7]. In the past, this effect was introduced

with optical Gaussons and for solitons with Kerr law,

power law, parabolic law, dual-power law and quadratic–

cubic law [4, 5, 7]. The current paper thus is bridging the

gap by addressing soliton cooling effect with polynomial

law of nonlinear refractive index that is occasionally

referred to as cubic–quintic–septic law. The perturbation

terms considered to study the adiabatic soliton dynamics

are of Hamiltonian as well as non-Hamiltonian types that

also include non-local kind. The details are sketched in the

rest of the paper after a quick re-visitation to the governing

nonlinear Schrödinger’s equation (NLSE) along with its

conservation laws.

Governing model

The governing nonlinear Schrödinger’s equation with

polynomial law of nonlinearity, in its dimensionless form,

is written as [3, 8]:

iqt þ aqxx þ b1 qj j2þb2 qj j4þb3 qj j6
� �

q ¼ 0: ð1Þ

Here, the dependent variable q(x, t) is a complex-valued

function with x and t being the spatial and temporal coor-

dinates, respectively. The coefficient of a is chromatic

dispersion, while the last three terms, the coefficients of bj
for j ¼ 1; 2; 3, are from self-phase modulation (SPM) effect

that stems from nonlinear refractive index of the fiber. The

first term is temporal evolution. The coefficients of dis-

persion and nonlinear terms are all real-valued constants,

while i ¼
ffiffiffiffiffiffiffi
�1

p
. This form of nonlinearity has not been

much studied. Some preliminary results have been reported

for optical fibers and in Bragg gratings. The bright 1-soli-

ton solutions to the model as recovered earlier are given

by [3, 7, 8]
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qðx; tÞ ¼ A sech
1
3½Bðx� vtÞ�ei �jxþxtþh0ð Þ: ð2Þ

The parameter A is the soliton amplitude, while its inverse

width is indicated by B and the velocity of the soliton is

indicated by v. From the phase component, j is the soliton

frequency, while x is its wave number, and finally, h0 is

simply the phase constant. The parameter relations with the

coefficients of the equation terms are as indicated below:

v ¼ �2aj: ð3Þ

The amplitude and width are expressed as

A ¼ 4 xþ aj2ð Þ
b3

� �1
6

; ð4Þ

and

B ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ aj2

a

r
; ð5Þ

which instantly prompts two constraint conditions as

a xþ aj2
� �

[ 0; and b3 xþ aj2
� �

[ 0: ð6Þ

Also, from (4) and (5), the relation between the soliton

amplitude and its inverse width is written as:

B ¼ 3

2

ffiffiffiffiffi
a

b3

r
A3; ð7Þ

and thus, the existence condition, which immediately kicks

in, is

ab3 [ 0: ð8Þ

Two of the conserved quantities, as shown earlier, are

power (P) and linear momentum (M), and they are,

respectively, represented as [3]

P ¼
Z 1

�1
qj j2dx ¼ A2

B

C 1
3

� �
C 1

2

� �

C 5
6

� � ð9Þ

and

M ¼ ia

Z 1

�1
qq�x � q�qx
� �

dx ¼ ajA2

B

C 1
3

� �
C 1

2

� �

C 5
6

� � : ð10Þ

Soliton perturbation

The perturbed NLSE for polynomial law is: [7, 8]

iqt þ aqxx þ b1 qj j2þb2 qj j4þb3 qj j6
� �

q ¼ i�R; ð11Þ

where R represents perturbation terms, while � is the per-

turbation parameter. It stands for quasimonochromaticity

that measures the relative width of the spectrum when

perturbation terms are present. Thus, one must have

0\� � 1 [1, 4, 5, 7].

When perturbation terms are turned on, the conserved

quantities are adiabatically deformed, and thus, they slowly

vary with time. The law of adiabatic variation of the two

indicated conservation laws leads to the slow dynamics of

power and soliton frequency as indicated below [1, 4, 5]:

dP

dt
¼ �

Z 1

�1
q�Rþ qR�ð Þdx ð12Þ

and

dj
dt

¼ �

2P
i

Z 1

�1
q�xR� qxR

�� �
dx� aj

Z 1

�1
q�Rþ qR�ð Þdx

� �
:

ð13Þ

The slow change of soliton velocity is governed

by [1, 4, 5, 7]:

v ¼ �2aj� �

P

Z 1

�1
x q�Rþ qR�ð Þdx: ð14Þ

Adiabatic parameter dynamics

The perturbation terms as indicated by R, from this paper,

are given as [4, 5, 7]:

R ¼ d qj j2mqþ aqx þ bqxx � cqxxx þ k qj j2mq
� �

x

þ h qj j2m
� �

x
qþ q qxj j2q� ivqxxxx

� iwqxxxxxx � in q2q�x
� �

x
�igq2

xq
� � ifq� q2

� �
xx

� il qj j2m
� �

x
qþ r1qþ r2qxð Þ

Z x

�1
qj j2mds:

ð15Þ

In (15), d accounts for multi-photon absorption, while a is

the intermodal dispersion, b represents band-pass filters

and c is the third-order dispersion. Next, k is the self-

steepening effect, while h gives the effect of nonlinear

dispersion and q accounts for nonlinear dissipation. Then

again, n, g and f stem from quasilinear pulses, while l is

from intra-pulse Raman scattering. Next, rj for j ¼ 1; 2

gives saturable amplifiers. Finally, v and w are associated

with fourth-order dispersion and sixth-order dispersion

terms, respectively. The parameter m represents full non-

linearity or maximum intensity.

With these perturbation terms, the adiabatic variation of

the soliton power and frequency results in:
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dP

dt
¼ 2�A2

105B2
105dA2mB

C m
3
þ 1

3

� �
C 1

2

� �

C m
3
þ 5

6

� �
"

�7bB B2 þ 15j2
� �C 1

3

� �
C 1

2

� �

C 5
6

� �

þ10qA2B 3B2 þ 7j2
� �C 2

3

� �
C 1

2

� �

C 1
6

� �

þ105A2 r1 þ r2Bð Þ
Z 1

�1
sinh s

sech
2
3s F

1

2
;
m

3
þ 1

2
;
3

2
;� sinh2 s

	 

ds

�

ð16Þ

dj
dt

¼� b 1 � að Þj3 � 2mlA2mB2

3ð2mþ 5Þ
C m

3
þ 1

3

� �
C 5

6

� �

C m
3
þ 5

6

� �
C 1

3

� �
"

�r1jðaþ 1ÞA2m

B

C 5
6

� �

C 1
2

� �
C 1

3

� �
Z 1

�1
sinh s

sech
2
3s F

1

2
;
m

3
þ 1

2
;
3

2
;� sinh2 s

	 

ds

�r2ajA2m

B

Z 1

�1
sinh s sech

2
3s F

1

2
;
m

3
þ 1

2
;
3

2
;� sinh2 s

	 

ds

�
;

ð17Þ

where in (16) and (17), the Gauss’ hypergeometric function

is [4]:

F a; b; c; zð Þ ¼
X1
n¼0

að Þn bð Þn
cð Þn

zn

n!
; ð18Þ

with Pochhammer symbol:

ðpÞn ¼
1 n ¼ 0;

pðpþ 1Þ � � � ðpþ n� 1Þ n[ 0:

�
ð19Þ

The convergence of the series is guaranteed provided

zj j\1: ð20Þ

Finally, Rabbe’s test of convergence yields another con-

vergence criterion which is

c\aþ b; ð21Þ

and this case amounts to saying

m[
3

2
: ð22Þ

Also, condition (20) when applied to (16) and (17) implies

sinh sj j\1: ð23Þ

Next, slow change in the speed of the soliton, from (14),

leads to

v ¼ �2aj� � aþ c
5

B2 þ 15j2
� �

þ 4vj
5

B2 þ 5j2
� ��

þ4wj 15B4 þ 22j2B2 þ 99j4
� �

þ 3j
2

n� 4g� 8fð Þ
C 2

3

� �
C 5

6

� �

C 1
6

� �
C 1

3

� �

� A2m

2ðmþ 1Þ ð4mþ 3Þkþ 4mhf g
C m

3
þ 1

3

� �
C 5

6

� �

C m
3
þ 5

6

� �
C 1

3

� �
#
:

ð24Þ

Thus, the perturbed soliton will travel down the optical

fiber, having polynomial form of SPM, with a fixed

amplitude �A and width �B that maintain the speed of light.

The relation between the amplitude and width is recover-

able from the following polynomial equation, which is

obtained from the fixed point of the dynamical system (16)

and (17), after turning off the effect of Raman scattering:

105d �A2m �B
C m

3
þ 1

3

� �
C 1

2

� �

C m
3
þ 5

6

� � � 7b �B3 C
1
3

� �
C 1

2

� �

C 5
6

� �

þ 30q �A2 �B3
C 2

3

� �
C 1

2

� �

C 1
6

� �

þ 105 �A2 r1 þ r2
�Bð Þ
Z 1

�1
sinh s sech

2
3s

F
1

2
;
m

3
þ 1

2
;
3

2
;� sinh2 s

	 

ds ¼ 0:

ð25Þ

Equation (25) can be solved for soliton amplitude in terms

of its width for a few special cases of the parameter m.

These are m ¼ 1; 2; 3 and 4. The last two cases can be

solved by Cardano’s method and Ferrari’s approach,

respectively. This is the phenomenon of optical soliton

cooling for polynomial law of nonlinear refractive index in

an optical fiber.

Conclusions

The phenomenon of optical soliton cooling is illustrated for

polynomial law of nonlinearity. The fixed value of the

amplitude for stable propagation of solitons is expressed in

terms of its width through an transcendental equation. This

was obtained from the fixed point of the dynamical system

of power and frequency of the soliton. The results of this

paper are thus interesting and have a wide range of appli-

cations in future. One would still need to consider the

stochastic perturbation in addition to deterministic pertur-

bation terms that would yield the mean free velocity of the

soliton. Later, quasistationary optical solitons with poly-

nomial law of nonlinearity are scheduled to be addressed.

Another pressing matter is to take up the quasiparticle

theory to suppress intra-channel collision of solitons
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propagating through an optical fiber with polynomial law

of refractive index. Thus, there are a lot of avenues to

venture!!
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