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Abstract—In this work, Kudryashov’s equation is studied with Lie symmetry analysis, which is implemented
to describe the propagation pulses in an optical fiber. The equation is converted into system of ordinary dif-
ferential equations with similarity transformations. These gave way to bright, dark and singular optical soliton
solutions to the model.
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1. INTRODUCTION

Optical solitons are aggressively pursued with sev-
eral models that have existed since the past few
decades [1–17]. There are several equations that have
been lately proposed to address the dynamics of soli-
ton propagation through a variety of waveguides such
as optical fibers, crystals, metamaterials, PCF and
magneto-optic waveguides. The most familiar model
is the nonlinear Schrödinger’s equation [2, 7, 11, 15].
A few other models, governing soliton dynamics, are
Biswas–Arshed equation [8, 16], Triki–Biswas equation
[1, 10], and the Radhakrishan–Kundu–Laksmanan
equation [13] that come with different forms of nonlinear
refractive index. Recently, N. Kudryashov proposed a
law of refractive index that led to Kudryashov’s equation
(KE) [9]. KE is used to describe the propagation pulses in
an optical fiber. The solutions to KE have been recovered
with extended trial function [4], F-expansion [5] and
undetermined coefficients [6]. The current paper han-
dles KE by Lie symmetry analysis.

Here, first we generate infinitesimals and Lie sym-
metries of KE. Then two vector fields are obtained.
With the help of these vector fields, the governing
equation is reduced into system of ordinary differential
equations (ODEs). Then exact optical soliton solu-

tions of system of ODEs are recovered. Finally, the
corresponding bright, dark and singular optical soliton
solutions of governing equation are presented.

1.1. Governing Model

The dimensionless form of KE is given by [4–6, 9]

(1)

In Eq. (1), the first term indicates the linear tem-
poral evolution and a indicates the coefficients of
chromatic dispersion. The remaining terms are nonlin-
ear and stem from the law of refractive index of an optical
fiber and gives self-phase modulation effect to the model.
At n = 1; by taking g = h = 0 and c = g = h = 0, the model
referred as parabolic law and Kerr law respectively,
which has been extensively studied. Other special cases
are power law and dual-power laws of nonlinearity
that has also been extensively studied. The goal of the
current paper will address Eq. (1), as it stands, exten-
sively and exhaustively by Lie symmetry analysis.

2. LIE SYMMETRY ANALYSIS
In this section, we will employ Lie classical method

[18–20] on Eq. (1) in order to obtain the infinitesi-
mals. To achieve this goal, let us consider1 The text was submitted by the authors in English.
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where u and v are real-valued functions. Equation (2)
transforms Eq. (1) into imaginary and real portions as

(3)

For the system of equations (3), let us consider
one-parameter (ε) transformations as

(4)

where ξ, τ, η, and φ are infinitesimals, depending
upon x, t, u, v, have to be determined.

The vector field associated with these transforma-
tions is

(5)
For system of equations (3), the second prolonga-

tions formula [19, 20] are

(6)

where ηx, ηt, φx, φt, φxx, and ηxx are extended infinites-
imals.

From the invariance conditions pr(2)V(Δ) = 0
whenever Δ = 0 in(3), we have

(7)

Substituting the values of infinitesimals ηx, ηt, φx,
φt, φxx, and ηxx, and by equating the coefficient of var-
ious derivative terms equal to zero, we get the system
of PDEs. By solving this system, we get

(8)

where C1, C2, C3, and C4 are arbitrary constants.
Hence Lie algebra of system (3) is spanned by the
infinitesimal generators as

(9)

The commutation relations determined of V1, V2,
V3, and V4 are given by

(10)

3. SYMMETRY REDUCTION 
AND INVARIANT SOLUTIONS

To derive invariant solutions of system (3), we have
to solve the corresponding characteristic equation
given as

(11)

where ξ, τ, η, and φ are presented by (8). To solve
characteristic Eq. (11), we will consider two cases of
vector fields: (i) V4 and (ii) V3 + βV2 + μV1, where β and
μ are arbitrary non-zero real numbers.

3.1. Case (i): V4

By solving characteristic Eq. (11), we have follow-
ing similarity variables:

(12)

where P and Q are new dependent variables, which
depends upon s.

Using (12) in (3), we have

(13)

(14)

where prime represents derivative w.r.t. s. From (13),
we have

(15)

where k1 is arbitrary constant.
By substituting (15) into (14) and solving, we have

following cases:
(a) When n = –2

(16)

(b) When n = –1

(17)
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(c) When n = 1

(18)

(d) When n = 2

(19)

(e) When n ≠ –2, –1, 1, and 2

(20)

where k2, k3, k4, k5, and k6, are arbitrary constants.
Hence, corresponding solution of (1) is given by

(21)

where Q is given by (16)–(20) and s is given by (12).

3.2. Case (ii): V3 + βV2 + μV1

By solving characteristic Eq. (11), we have follow-
ing similarity variables:

(22)

where M and N are new dependent variables, which
depends upon ρ.

Substituting (22) in (3), we have

(23)

(24)

where prime represents derivative w.r.t. ρ. Double
integral of (23) gives

(25)

where k7 and k8 are arbitrary constants.
Substituting (25) into (24), we have

(26)
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(a) When n = –2, Eq. (26) can be written as

(27)

Integrating (27), we have

(28)

where k9 is arbitrary constant.
Assuming M2(ρ) = A(ρ) and c = 0; Eq. (28) trans-

form into

(29)

Equation (29) can be written as

(30)

where

(31)

(b) When n = –1, Eq. (26) can be written as

(32)

Integrating (32), we have

(33)

where k10 is arbitrary constant.
Assuming M(ρ) = A(ρ), k7 = 0 and b = 0; Eq. (33)

transform into Eq. (30), where
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(c) When n = 1, Eq. (26) can be written as

(35)

Integrating (35), we have

(36)

where k11 is arbitrary constant.
Assuming M(ρ) = A(ρ), k7 = 0 and h = 0; Eq. (36)

transform into Eq. (30),where

(37)

(d) When n = 2, Eq. (26) can be written as

(38)

Integrating (38), we have

(39)

where k12 is arbitrary constant.
Assuming M2(ρ) = A(ρ) and g = 0; Eq. (39) trans-

form into Eq. (30), where

(40)

(e) In the case of n ≠ –2, –1, 1, 2, by integrating
Eq. (26), we have

(41)

where k13 is arbitrary constant.
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Let us assume M(ρ) = A1/n(ρ), we have

(42)

Multiplying Eq. (42) by n2A2 – 2/n and taking k7 = 0
and k13 = 0, we have

(43)

Equation (43) is similar to Eq. (30), where

(44)

Relation between parameters a, b, c, g, h, and n
of (1) and parameters α1, α2, α3, α4, and α5 of (30) in
order to derive the solutions M(ρ) of (26) is given by
following Table 1.

3.3. Soliton Solutions to Equation (30)
To derive the general solution of the equation

(45)
one can use substituting methods [11, 12, 16, 17]. In
[9], the author expressed the general solution of
Eq. (45) in the form of Weierstrass and Jacobi elliptic
function. Here we obtained the bright, dark and singu-
lar soliton solutions of Eq. (45).

3.3.1. Bright solitons. Let us assume

Then the solution of Eq. (45) is given by
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Table 1. Relation between parameters of Eqs. (1) and (30) in order to derive the solutions M(ρ) of (26)

Parameters α1 α2 α3 α4 α5 M(ρ)

n = –2,
c = 0

k9

n = –1,
k7 = b = 0 k10 A(ρ)

n = 1,
k7 = h = 0 k11 A(ρ)

n = 2,
g = 0

k12

n ≠ –2, –1, 1, 2,
k7 = k13 = 0 A1/n(ρ)
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where k14 is arbitrary constant. Hence corresponding
bright soliton solution of Eq. (1) is given by

(47)

where ρ = μx – βt and the values of M depending upon
various parameters and the function A as discussed in
Table 1 and A is given by (46).

3.3.2. Dark solitons. Let us assume

Then the solution of Eq. (45) is given by

(48)

where k15 is arbitrary constant. Hence corresponding
bright soliton solution of Eq. (1) is given by

(49)

where ρ = μx – βt and the values of M depending upon
various parameters and the function A as discussed in
Table 1 and A is given by (48).

3.3.3. Singular solitons. Let us assume
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Then the solution of Eq. (45) is given by

(50)

where k16 is arbitrary constant. Hence corresponding
bright soliton solution of Eq. (1) is given by

(51)

where ρ = μx – βt and the values of M depending upon
various parameters and the function A as discussed in
Table 1 and A is given by (50).

The constraint conditions or existence criteria for
these solitons are given as

(52)

for bright and singular solitons, while for dark solitons
one needs to have

(53)

4. CONCLUSIONS
This paper studied KE to secure bright, dark and

singular soliton solutions to the model. The existence
criteria for such solitons are also enumerated. These
constraints guarantee the formation of such solitons.
The results are thus strongly encouraging to pursue
this avenue of research, further along. Later on, the
model will be extended to study soliton dynamics with
KE in birefringent fibers and DWDM topology. Addi-
tional optoelectronic devices are also going to be
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touched base upon. These would be magneto-optic
waveguides, optical metamaterials, optical couplers
and several such. Those results are currently awaited
and they would be reported with time.
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