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Abstract: This work analytically recovers the highly dispersive bright 1–soliton solution using for
the perturbed complex Ginzburg–Landau equation, which is studied with three forms of nonlinear
refractive index structures. They are Kerr law, parabolic law, and polynomial law. The perturbation
terms appear with maximum allowable intensity, also known as full nonlinearity. The semi-inverse
variational principle makes this retrieval possible. The amplitude–width relation is obtained by
solving a cubic polynomial equation using Cardano’s approach. The parameter constraints for the
existence of such solitons are also enumerated.
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1. Introduction

One of the most important necessities with a mathematical model that describes
soliton propagation across inter-continental distances is its integrability to secure an exact
soliton solution. This provides the ease and convenience of conducting further analysis
with such a solution structure at our disposal. Some such conveniences are the study
of quasi-monochromatic solitons, the computing of the collision-induced timing jitter,
the application of the variational principle, the implementation of the moment method
approach, or even the application of collective variables to secure the dynamical system of
soliton parameters [1–30]. Thus, it is necessary to recover the structure of a soliton. There
are diverse approaches that can make this soliton solution retrieval possible. These range
of approaches are visible in various works across the board. However, in specific situations,
securing a soliton solution is rendered to be challenging. In fact, under such situations, the
classic approach of inverse scattering transform is not applicable either, since the model
fails the Painleve test of integrability. In such a situation, a modern approach of integrability
has been successfully applied to recover an analytical bright 1–soliton solution. This is
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the application of the semi-inverse variational principle (SVP) that was proposed by J. H.
He [11,12,17].

SVP was successfully implemented to a variety of problems in a wide range of physical
situations. Apart from photonics, some such fields are fluid dynamics [2,9,10,12,13,23],
relativistic quantum mechanics [21,24], plasma physics [4], mathematical chemistry [11],
and various others [5,13–17,22,26]. In particular, the application of optics problems has been
quite noticeably successful and widely visible, as reported [1–20]. The models that have
been commonly studied in optics, with the implementation of SVP, are the Lakshmanan–
Porsezian–Daniel model [1,7], Schrödinger’s nonlinear model [20], and the Fokas–Lenells
model [8]. In this context, solitons were studied with chromatic dispersion [1] as well
as cubic–quartic dispersive effects [7]. The novelty of the work ushers in with an estab-
lished analytical soliton solution for an arbitrary maximum intensity where all pre-existing
integration approaches fail.

The current paper will address SVP, for the first time, with the complex Ginzburg–
Landau equation (CGLE) [3,19,25]. This will appear with six dispersion sources that con-
stitute highly dispersive (HD) optical solitons [6,15,16,25]. The perturbation terms appear
with maximum allowable intensity, i.e., AKA full nonlinearity [3–8,15,16,22]. Three forms of
nonlinear refractive index structures are addressed: cubic (or Kerr) nonlinearity [1,3,14,25],
parabolic (or cubic–quintic) nonlinearity [14,25], and polynomial nonlinearity [15,16,25].
Bright 1–soliton is finally extracted, for each law, where the soliton amplitude–width rela-
tion is recoverable by solving a cubic polynomial equation using Cardano’s approach [6].
The significance of the work is the retrieval of an analytical bright 1–soliton solution in
spite of the fact that the perturbed CGLE is not rendered integrable by any of the pre-
existing algorithms. The details are exhibited after introducing the model together with its
perturbation terms.

Governing Model

The general form of CGLE without the perturbation terms reads as [25]

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
1
|q|2q∗

[
α|q|2

(
|q|2
)

xx
− β

{(
|q|2
)

x

}2
]
+ F

(
|q|2
)

q = 0.
(1)

Here, q(x, t) depicts the wave profile that travels down the optical fiber and is a
complex valued function. The first term denotes the linear temporal evolution that has
its coefficient as i =

√
−1. The coefficients of aj for 1 ≤ j ≤ 6 represent the six dispersion

terms. Here, a1 gives the inter-modal dispersion; a2 accounts for the chromatic dispersion;
while a3 till a6 yield the third-order, fourth-order, fifth-order, and sixth-order dispersion
effects sequentially. Next, α and β come from the nonlinear effects that are considered in
CGLE [25]. The intensity-dependent nonlinear refractive index of the fiber is governed
by the real valued functional F. The current paper will consider three nonlinear forms:
cubic (or Kerr) nonlinearity, parabolic (or cubic–quintic) nonlinearity, and polynomial
nonlinearity.

With perturbation terms turned on, the CGLE extends to

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
1
|q|2q∗

[
α|q|2

(
|q|2
)

xx
− β

{(
|q|2
)

x

}2
]
+ F

(
|q|2
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
.

(2)

The perturbation terms stem from the self-steepening effect, the self-frequency shift,
and nonlinear dispersion, which are represented by the coefficients of λ, θ, and σ, re-
spectively. The parameter m comes from maximum permissible intensity, also known as
full nonlinearity.
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2. Mathematical Start-Up

The starting hypothesis to handle Equation (2) is the substitution

q(x, t) = g(x− vt)ei(−κx+ωt+θ0) = g(s)ei(−κx+ωt+θ0). (3)

Here in (3), the function g(x, t) is the traveling wave hypothesis while from the phase,
ω is the wave number, while θ0 is the phase constant and κ represents the frequency.
Inserting (3) into (2) gives way to the following set of relations. The real part gives:(

−ω− a6κ6 + a5κ5 + a4κ4 − a3κ3 − a2κ2 + a1κ
)

g
+
(
a2 + 2α + 3a3κ − 6a4κ2 − 10a5κ3 + 15a6κ4)g′′

+
(
a4 + 5a5κ − 15a6κ2)g(iv) + a6g(vi) + 2(α− 2β)

(g′)2

g +F
(

g2)g = κ(λ + σ)g2m+1.
(4)

The imaginary part yields:

{(2m + 1)λ + 2mθ + σ}g2mg′

+
(
v− a1 + 2a2κ + 3a3κ2 − 4a4κ3 − 5a5κ4 + 6a6κ5)g′

−
(
a3 − 4a4κ − 10a5κ2 + 20a6κ3)g′′′ − (a5 − 6a6κ)g(v) = 0.

(5)

In (4) and (5), the notations g′ = dg/ds, g′′ = d2g/ds2, g′′′ = d3g/ds3, g(iv) = d4g/ds4,
g(v) = d5g/ds5 and g(vi) = d6g/ds6 are adopted. Next, introducing the parameters

P1 = −a6κ6 + a4κ4 + a5κ5 − a3κ3 − a2κ2 + a1κ −ω, (6)

P2 = a2 + 2α + 3a3κ − 6a4κ2 − 10a5κ3 + 15a6κ4, (7)

P3 = a4 + 5a5κ − 15a6κ2, (8)

and setting
α = 2β, (9)

Equation (4) transforms to

P1g + P2g′′ + P3g(iv) + a6g(vi) + F
(

g2
)

g = κ(λ + σ)g2m+1. (10)

Thus, with (9), the governing Equation (2) modifies to:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(
|q|2
)

x

}2
]
+ F

(
|q|2
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
.

(11)

Next, the imaginary part Equation (5) gives the following parameter constraints

(2m + 1)λ + 2mθ + σ = 0, (12)

v = a1 − 2a2κ − 3a3κ2 + 4a4κ3 + 5a5κ4 − 6a6κ5, (13)

a3 − 4a4κ − 10a5κ2 + 20a6κ3 = 0, (14)

and
a5 = 6a6κ. (15)

Equation (13) gives the velocity. The relations (12)–(15) stay the same, irrespective of
the type of nonlinearity considered.
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3. Application of SVP

From Equation (10), multiplying by g′ and integrating gives

P1g2 + P2(g′)2 − P3(g′′ )2 + a6(g′′′ )2

+2
∫

F(g2)gg′dg− κ(λ+σ)
m+1 g2m+2 = K,

(16)

where K is the integration constant. The stationary integral is introduced as below

J =
∫ ∞

−∞

[
P1g2 + P2(g′)2 − P3(g′′ )2 + a6(g′′′ )2

+2
∫

F
(

g2)gg′dg− κ(λ+σ)
m+1 g2m+2

]
dx. (17)

The bright 1–soliton to (11) is the same as that of the homogeneous counterpart, namely
with λ = θ = σ = 0, whose structure is of the form:

g(s) = A f {sec hB(x− vt)}, (18)

where the functional form of the bright soliton, given by f , is based on the type of nonlin-
earity in question. The amplitude (A) and inverse width (B) of the soliton will be recovered
by the coupled system of Equations (1)–(18):

∂J
∂A

= 0, (19)

and
∂J
∂B

= 0. (20)

This principle will be applied to study HD bright 1–soliton to (11) for three nonlin-
ear forms.

3.1. Kerr Law

The refractive index structure is presented as

F(s) = b0s, (21)

where b0 is a real-valued constant parameter. Thus, Equation (11) reads as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(
|q|2
)

x

}2
]
+ b0|q|2q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(22)

so that (16) comes out as

2P1g2 + 2P2
(

g′
)2 − 2P3(g′′ )2 + 2a6(g′′′ )2 + b0g4 − 2κ(λ + σ)

m + 1
g2m+2 = K. (23)

The stationary integral, in this case, is introduced as

J =
∫ ∞

−∞

[
2P1g2 + 2P2(g′)2 − 2P3(g′′ )2

+2a6(g′′′ )2 + b0g4 − 2κ(λ+σ)
m+1 g2m+2

]
dx. (24)

The solution of (22), for λ = θ = σ = 0, is given as [19]

g(x− vt) = Asec h3[B(x− vt)]. (25)
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By substituting this 1–soliton solution into (24), one can obtain

J = 16P1
15

A2

B + 144
35 P2 A2B− 592

35 P3 A2B3 + 15,024
1155 a6 A2B5

+ 256
693

b0 A4

B − κ(λ+σ)
m+1

PA2m+2

B ,
(26)

where

P =
8m(3m + 1)(3m + 2)

(2m + 1)(6m + 1)(6m + 5)

Γ(3m)Γ
(

1
2

)
Γ
(

3m + 1
2

) . (27)

The coupled pair of Equations (19) and (20), for Kerr law, is given as:

P1

15
+

9
35

P2B2 − 37
35

P3B4 +
939

1155
a6B6 +

32
693

b0 A2 − κ(λ + σ)

16
PA2m = 0, (28)

and

− P1

15
+

9
35

P2B2 − 111
35

P3B4 +
4695
1155

a6B6 +
16

693
b0 A2 − κ(λ + σ)

16(m + 1)
PA2m = 0. (29)

Adding (28) and (29) leaves us with

18
35

P2B2 − 148
35

P3B4 +
5634
1155

a6B6 +
48
693

b0 A2 − κ(λ + σ)(m + 2)
16(m + 1)

PA2m = 0. (30)

Equation (30) can be restructured as a cubic polynomial equation in u:

au3 + bu2 + cu + d = 0, (31)

with the following notations:
B2 = u, (32)

a =
5634
1155

a6, (33)

b = −148
35

P3, (34)

c =
18
35

P2, (35)

and

d =
48

693
b0 A2 − κ(λ + σ)(m + 2)

16(m + 1)
PA2m. (36)

By Cardano’s method, (31) and (32) solves to [6]:

B =

{(− b3

27a3 +
bc

6a2 − d
2a

)
−
√(
− b3

27a3 +
bc

6a2 − d
2a

)2
+
(

c
3a −

b2

9a2

)3
} 1

3

+

{(
− b3

27a3 +
bc

6a2 − d
2a

)
+

√(
− b3

27a3 +
bc

6a2 − d
2a

)2
+
(

c
3a −

b2

9a2

)3
} 1

3

− b
3a


1
2

.

(37)

The constraint for this solution to exist is

a6 6= 0, (38)

along with the discriminant
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(
− b3

27a3 +
bc

6a2 −
d
2a

)2

+

(
c

3a
− b2

9a2

)3

> 0. (39)

Moreover,{(
− d

2a +
bc

6a2 − b3

27a3

)
−
√(
− d

2a +
bc

6a2 − b3

27a3

)2
+
(

c
3a −

b2

9a2

)3
} 1

3

+

{(
− d

2a +
bc

6a2 − b3

27a3

)
+

√(
− d

2a +
bc

6a2 − b3

27a3

)2
+
(

c
3a −

b2

9a2

)3
} 1

3

> b
3a .

(40)

Thus, the HD bright 1–soliton to (22) is introduced as (see Figure 1)

q(x, t) = Asec h3[B(x− vt)]ei(−κx+ωt+θ0). (41)
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Here, the inverse width (B) is explicitly expressed via (37), provided that the constraint
conditions given by (38)–(40) are maintained.

3.2. Parabolic Law

The refractive index structure is indicated below

F(s) = b1s + b2s2, (42)

where b1 and b2 are real-valued constant parameters. Then, Equation (11) evolves as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(
|q|2
)

x

}2
]
+
(

b1|q|2 + b2|q|4
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(43)

so that (16) comes out as

6P1g2 + 6P2(g′)2 − 6P3(g′′ )2 + 6a6(g′′′ )2

+3b1g4 + 2b2g6 − 6κ(λ+σ)
m+1 g2m+2 = K.

(44)

The stationary integral, in this case, is structured as

J =
∫ ∞

−∞

[
6P1g2 + 6P2(g′)2 − 6P3(g′′ )2 + 6a6(g′′′ )2

+3b1g4 + 2b2g6 − 6κ(λ+σ)
m+1 g2m+2

]
dx. (45)
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The solution of (43), for λ = θ = σ = 0, is given as [19]

g(x− vt) = Asec h
3
2 [B(x− vt)]. (46)

Byubstituting this 1–soliton solution into (45), one can obtain

J = πP1
A2

B + 9π
16 P2 A2B− 153

128 P3 A2B3 + 21,429
4096 a6 A2B5

+ 16
15

b1 A4

B + 35π
192

b2 A6

B − 6κ(λ+σ)P
m+1

A2m+2

B ,
(47)

where

P =
2(3m + 1)

3m(3m + 2)

Γ
(

3m
2 + 1

2

)
Γ
(

1
2

)
Γ
( 3m

2
) . (48)

The coupled pair of Equations (19) and (20), for parabolic law, is:

πP1 +
9π
16 P2B2 − 153π

128 P3B4 + 21,429π
4096 a6B6

+ 32
15 b1 A2 + 35π

64 b2 A4 − 2κ(λ + σ)PA2m = 0,
(49)

and
−πP1 +

9π
16 P2B2 − 459π

128 P3B4 + 107,145π
4096 a6B6

− 16
15 b1 A2 − 35π

192 b2 A4 + 2κ(λ+σ)
m+1 PA2m = 0.

(50)

Adding (49) and (50) yields

9π
8 P2B2 − 153π

32 P3B4 + 64,287π
2048 a6B6

+ 16
15 b1 A2 + 70π

192 b2 A4 − 2mκ(λ+σ)
m+1 PA2m = 0.

(51)

Equation (51) is reducible to (31) with

a =
64, 287π

2048
a6, (52)

b = −153π

32
P3, (53)

c =
9π

8
P2, (54)

and

d =
16
15

b1 A2 +
70π

192
b2 A4 − 2mκ(λ + σ)

m + 1
PA2m. (55)

Hence, the HD bright 1–soliton to (43) reads as (see Figure 2)

q(x, t) = Asec h
3
2 [B(x− vt)]ei(−κx+ωt+θ0). (56)



Mathematics 2022, 10, 987 8 of 11

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 11 
 

 

𝑑 =
16

15
𝑏1𝐴

2 +
70𝜋

192
𝑏2𝐴

4 −
2𝑚𝜅(𝜆 + 𝜎)

𝑚 + 1
𝑃𝐴2𝑚. (55) 

Hence, the HD bright 1–soliton to (43) reads as (see Figure 2) 

𝑞(𝑥, 𝑡) = 𝐴sech
3
2[𝐵(𝑥 − 𝑣𝑡)]𝑒𝑖(−𝜅𝑥+𝜔𝑡+𝜃0). (56) 

Here, the inverse width (𝐵 ) is explicitly expressed via (37), providing that the 

constraint conditions given by (38)–(40) are maintained. 

 

Figure 2. Profile of the HD bright 1–soliton (56) setting all arbitrary parameters to unity. 

3.3. Polynomial Law 

The refractive index structure extends to 

𝐹(𝑠) = 𝑏1𝑠 + 𝑏2𝑠
2 + 𝑏3𝑠

3, (57) 

where 𝑏1, 𝑏2, and 𝑏3 are real-valued constant parameters. Hence, Equation (11) comes 

out as 

𝑖𝑞𝑡 + 𝑖𝑎1𝑞𝑥 + 𝑎2𝑞𝑥𝑥 + 𝑖𝑎3𝑞𝑥𝑥𝑥 + 𝑎4𝑞𝑥𝑥𝑥𝑥 + 𝑖𝑎5𝑞𝑥𝑥𝑥𝑥𝑥 + 𝑎6𝑞𝑥𝑥𝑥𝑥𝑥𝑥 

+(𝑏1|𝑞|2 + 𝑏2|𝑞|4 + 𝑏3|𝑞|6)𝑞 +
𝛽

|𝑞|2𝑞∗
[2|𝑞|2(|𝑞|2)𝑥𝑥 − {(|𝑞|2)𝑥}

2] 

= 𝑖[𝜆(|𝑞|2𝑚𝑞)𝑥 + 𝜃(|𝑞|2𝑚)𝑥𝑞 + 𝜎|𝑞|2𝑚𝑞𝑥], 

(58) 

so that (16) now is 

12𝑃1𝑔
2 + 12𝑃2(𝑔

′)2 − 12𝑃3(𝑔
′′)2 + 12𝑎6(𝑔

′′′)2 

+6𝑏1𝑔
4 + 4𝑏2𝑔

6 + 3𝑏3𝑔
8 −

12𝜅(𝜆 + 𝜎)

𝑚 + 1
𝑔2𝑚+2 = 𝐾. 

(59) 

The stationary integral, for polynomial law, reads as 

𝐽 = ∫
∞

−∞

[
12𝑃1𝑔

2 + 12𝑃2(𝑔
′)2 − 12𝑃3(𝑔

′′)2 + 12𝑎6(𝑔
′′′)2

+6𝑏1𝑔
4 + 4𝑏2𝑔

6 + 3𝑏3𝑔
8 −

12𝜅(𝜆 + 𝜎)

𝑚 + 1
𝑔2𝑚+2

] 𝑑𝑥. (60) 

The solution of (58), for 𝜆 = 𝜃 = 𝜎 = 0, is [19] 

𝑔(𝑥 − 𝑣𝑡) = 𝐴sech[𝐵(𝑥 − 𝑣𝑡)]. (61) 

By substituting this 1–soliton solution into (60), one can obtain 

𝐽 = 3𝑃1

𝐴2

𝐵
+ 𝑃2𝐴

2𝐵 −
7

5
𝑃3𝐴

2𝐵3 +
31

7
𝑎6𝐴

2𝐵5 +
𝑏1𝐴

4

𝐵
 (62) 
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Here, the inverse width (B) is explicitly expressed via (37), providing that the con-
straint conditions given by (38)–(40) are maintained.

3.3. Polynomial Law

The refractive index structure extends to

F(s) = b1s + b2s2 + b3s3, (57)

where b1, b2, and are real-valued constant parameters. Hence, Equation (11) comes out as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

b1|q|2 + b2|q|4 + b3|q|6
)

q + β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(
|q|2
)

x

}2
]

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(58)

so that (16) now is

12P1g2 + 12P2(g′)2 − 12P3(g′′ )2 + 12a6(g′′′ )2

+6b1g4 + 4b2g6 + 3b3g8 − 12κ(λ+σ)
m+1 g2m+2 = K.

(59)

The stationary integral, for polynomial law, reads as

J =
∫ ∞

−∞

[
12P1g2 + 12P2(g′)2 − 12P3(g′′ )2 + 12a6(g′′′ )2

+6b1g4 + 4b2g6 + 3b3g8 − 12κ(λ+σ)
m+1 g2m+2

]
dx. (60)

The solution of (58), for λ = θ = σ = 0, is [19]

g(x− vt) = Asec h[B(x− vt)]. (61)

By substituting this 1–soliton solution into (60), one can obtain

J = 3P1
A2

B + P2 A2B− 7
5 P3 A2B3 + 31

7 a6 A2B5 + b1 A4

B
+ 8b2

15
A6

B + 12b3
35

A8

B −
3κ(λ+σ)P

m+1
A2m+2

B ,
(62)

where

P =
m

2m + 1

Γ(m)Γ
(

1
2

)
Γ
(

m + 1
2

) . (63)
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The coupled pair of Equations (19) and (20), for polynomial law, formulates as:

3P1 + P2B2 − 7
5 P3B4 + 31

7 a6B6 + 2b1 A2

+ 24
15 b2 A4 + 48

35 b3 A6 − 3κ(λ + σ)PA2m = 0,
(64)

and
−3P1 + P2B2 − 21

5 P3B4 + 155
7 a6B6 − b1 A2

− 8
15 b2 A4 − 12

35 b3 A6 − 3κ(λ+σ)
m+1 PA2m = 0.

(65)

Adding (64) and (65) implies to

2P2B2 − 28
5 P3B4 + 186

7 a6B6 + b1 A2 + 16
15 b2 A4

+ 36
35 b3 A6 − 3(m+2)κ(λ+σ)

m+1 PA2m = 0.
(66)

Again, Equation (66) is transformable to the cubic polynomial Equation (31) where

a =
186
7

a6, (67)

b = −28
5

P3, (68)

c = 2P2, (69)

and

d = b1 A2 +
16
15

b2 A4 +
36
35

b3 A6 − 3(m + 2)κ(λ + σ)

m + 1
PA2m. (70)

Hence, the HD bright 1–soliton to (58) comes out as (see Figure 3)

q(x, t) = Asec h[B(x− vt)]ei(−κx+ωt+θ0). (71)
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Here, the inverse width (B) is explicitly expressed via (37), providing that the constraint
conditions given by (38)–(40) are maintained.

4. Conclusions

This work obtains an analytical expression of the HD bright 1–soliton to the perturbed
CGLE by SVP, where the perturbation terms are considered with the maximum allowable
intensity. Three nonlinear forms are addressed. Such an analytical 1–soliton solution, with
arbitrary intensity parameters, in its closed form, and is not recoverable by any of the
pre-existing integration algorithms.

There are some shortcomings to this approach. It is only the bright soliton that is
obtainable using this approach. This scheme fails to retrieve singular or dark solitons since
the stationary integral is rendered to be divergent with singular or dark solitons. The bright
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1–soliton solutions that are recovered for three nonlinear forms are not exact since they are
obtained by the usage of a principle, namely the SVP. Therefore, the results of this work
cannot be compared with any pre-existing results since there are none. The homogenous
model was first proposed during 2021 [25] and the current paper is the very first one to
extend the model with perturbation terms and with full nonlinearity. The simulations,
therefore, provide a visual accuracy to the proposed approach, namely the SVP.

This analytical soliton solution can take us further along with advanced studies. Some
of them include the analysis of quasi-monochromatic solitons, the computing of the soliton
parameter dynamics with the help of the variational principle, the study of the collision-
induced timing jitter and the numerical simulation of the problem with the application of
the Adomian decomposition algorithm, Laplace ADM, and variational iteration approach.
More research results that can be aligned with the current findings [27–30] exist.

Author Contributions: Conceptualization, A.B.; methodology, T.B.; software, S.K.; writing—original
draft preparation, L.M.; writing—review and editing, Y.Y.; project administration, H.M.A. All authors
have read and agreed to the published version of the manuscript.
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