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Abstract: This paper secures solitary waves and conservation laws to the familiar Korteweg–de Vries
equation and Gardner’s equation with three dispersion sources. The traveling wave hypothesis
leads to the emergence of such waves. The three sources of dispersion are spatial dispersion, spatio–
temporal dispersion and the dual-emporal–spatial dispersion. The conservation laws are enumerated
for these models, evolved from the multiplier approach. The conserved quantities are computed with
the solitary wave solutions that were recovered.
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1. Introduction

One of the several forms of pre–existing models for shallow water waves is the
Korteweg–de Vries (KdV) equation, which has been extensively investigated [1–20]. A
deluge of results has appeared from a variety of sources, ranging from its integrability,
numerical schemes, and vector forms of the model for addressing multi-layered flow. The
KdV equation was handled with various forms of nonlinearity, including arbitrary power–
law. The model was also addressed with logarithmic law of nonlinearity, which yielded
Gaussian solitary waves [3]. Later, multi-layered fluid flow along lake–shores and beaches
was studied with the Gear–Grimshaw model as well as the Zareamoghaddam model, which
were successfully handled both analytically and numerically together with the recovery of
solitary wave solutions and their conservation laws [2,3,6]. Subsequently, the KdV equation
was extended/generalized to incorporate dual nonlinear effects. This is Gardner’s equation
(GE), which was later studied extensively to address shallow water wave effects. It is not
out of place to point out the fact that apart from the KdV equation and Gardner’s equation,
there are several other forms of nonlinear wave equations that gave way to N–soliton
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solutions. The method of integrability for such models is the Riemann–Hilbert approach.
although there is yet another well-known and well-established scheme to locate N–soliton
solutions including soliton radiation [11–13]. This is the Inverse Scattering Transform (IST).

The current paper will revisit both models with the inclusion of triple dispersive effects
that stem from triple spatial dispersion, spatio–temporal dispersion and dual-temporal–
spatial dispersion. This gives an extension to the familiar couple of models that have
been studied with third-order dispersion only. While the spatio–temporal dispersion is
addressed in shallow water waves with Benjamin–Bona–Mahoney equation, the dual-
temporal-spatial dispersive effect was first proposed in 1977 by Joseph and Egri and was
never seen again after its first appearance [4]. The current work incorporates all three
dispersive effects, and the solitary waves for both models are recovered. The relation
between the inverse width and the soliton velocity are also analyzed. The simulations
finally led to the visual effect of behind-the-scenes, mathematical analysis of the models.
The conservation laws for all models are exhibited as well.

Governing Model

The generalized form of the KdV equation and its type are all incorporated in the
following structure:

qt + F(q)qx + b1qxxx + b2qxxt + b3qxtt = 0. (1)

Here, x and t are the independent variables that respectively depict spatial and tem-
poral variables. Then, the dependent variable q(x, t) represents the wave profile. The
first term is the temporal evolution of the wave. The second term is from the effect of
nonlinearity, which contains a single effect for the KdV equation and dual nonlinear terms
that give GE. The three dispersion terms carry the coefficients bj for j = 1, 2, 3, from triple
spatial dispersion, spatio–temporal dispersion, and dual-temporal–spatial dispersion ef-
fects, respectively. The KdV equation and GE has b2 = b3 = 0, which has exhausted the
journals [1,3,5,7,16].

In order to study the model expressed by Equation (1) with traveling wave hypothesis,
one would choose the following hypothesis:

q(x, t) = g(x− vt). (2)

Here, the function g denotes the solitary wave profile, with v being the velocity of
the wave. This assumption would transform (1) into the following ordinary differential
equation (ODE):

vg′ − F(g)g′ −
(

b1 − b2v + b3v2
)

g′′′ = 0, (3)

which itegrates to

vg−
∫

F(g)dg−
(

b1 − b2v + b3v2
)

g′′ = 0, (4)

upon choosing the integration constant to be zero, as relevant for solitary waves. Next,
multiplying (3) by g′ and integrating leads to

vg2 − 2
∫ ∫ g

F(u)dudg−
(

b1 − b2v + b3v2
)(

g′
)2

= 0. (5)

The final integration that would lead to the solitary wave solution would be possible
once the exact form of nonlinearity is considered. This study would therefore be classified
into the subsequent three subsections depending on the type of nonlinearity.

The study will be split into two sections that detail the KdV equation and GE in se-
quence. The first section contains three subsections based on the structure of the nonlinear
term while the second section has two subsections based on the structure of the two nonlin-
ear terms. The details on traveling waves and the conservation laws are also extracted.
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2. Single Nonlinearity (KdV Equations)

Equation (1) will now be studied with a single nonlinear term of three different types.
The traveling wave hypothesis will lead to the solitary waves to be derived, and the
corresponding parameter constraints will be enlisted for all three cases. The respective
conservation laws will be retrieved by the multiplier method, and the conserved quantities
will be computed using the derived solitary wave solution.

2.1. KdV Equation

For this model, F(q) = aq for any real-valued constant a. From (1), this leads to [4]

qt + aqqx + b1qxxx + b2qxxt + b3qxtt = 0, (6)

which would mean that (5) transforms into

3vg2 − ag3 − 3
(

b1 − b2v + b3v2
)(

g′
)2

= 0. (7)

Finally, separating variables and integrating yields a solitary wave solution as follows:

q(x, t) = Asec h2[B(x− vt)]. (8)

Here, the inverse width is B and A is the amplitude of the wave; they are presented
below as

A =
3v
a

, (9)

and

B =
1
2

√
v

b1 − b2v + b3v2 . (10)

The width of the wave therefore introduces the following parameter constraint:

v
(

b1 − b2v + b3v2
)
> 0. (11)

Figure 1 depicts the surface plot of a solitary wave (8) of the KdV equation with triple
dispersion terms. The parameter values chosen are a = 1, v = 1, b1 = 1, b2 = 1, and b3 = 1.
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Conservation Laws

For the conserved flow that renders a closed form of the respective models,
(
Tt, Tx)

satisfies DtTt + DxTx = 0 along the solutions. Tt represents the conserved density and Tx
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is the conserved flux [2,4,5,9,14,15]. We present the various densities that arise from the
multipliers Q(t, x, u, ut, ux, uxx, utt, uxt) when

DtTt + DxTx = Q(qt + aqqx + b1qxxx + b2qxxt + b3qxtt). (12)

Case 1:
Q = 1 and Tt = −2

3
b3qxt −

1
3

b2qxx − q. (13)

Case 2:

Q = q and Tt = −2
3

qb3qxt −
1
3

b2qxxq +
1
3

b3qxqt +
1
6

b2qx
2 − 1

2
q2. (14)

Case 3:
Q =

1
2b2

(
aq2 + 2b1qxx + 2b2qxt + 2b3qxt

)
, (15)

and
Tt = 2aq3 − b1b2qqxxxx + b1b2qxqxxx + 2b1b2qxx

2 − 2b1b3qqxxxt

+4b1b3qtqxxx − 2b1b3qxqxxt + 4b1b3qxtqxx − b2
2qqxxxt + b2

2qxqxxt

+2b2
2qxtqxx − 3b2b3qqxxtt + 4b2b3qtqxxt + 2b2b3qttqxx − b2b3qxqxtt

+4b2b3qxt
2 − 2b3

2qqxttt + 4b3
2qtqxtt + 4b3

2qttqxt

−2b3
2qtttqx + 6b1qqxx + 3b2qqxt + 3b2qtqx + 6b3qt

2.

(16)

Therefore, the respective conserved quantities are

M =
∫ ∞

−∞
Ttdx =

∫ ∞

−∞
qdx =

2A
B

, (17)

P =
∫ ∞

−∞
Ttdx =

1
6

∫ ∞

−∞
{3q2 − (3b2 + 2vb3)q2

x}dx=
2A2

45B
{15− 4B2(3b2 + 2vb3)}, (18)

and

H =
∫ ∞

−∞
Ttdx =

∫ ∞

−∞

{
2aq3 − 6

(
b1 − v2b3

)
q2

x

}
dx=

32A2

15B

{
aA− 3B2

(
b1 − v2b3

)}
. (19)

Here, H gives the Hamiltonian, P stems from linear momentum, and M is from mass.
To evaluate the integrals in (17)–(19), the solitary wave solution given by (8) is utilized.

2.2. Modified KdV Equation

Here, F(q) = aq2 for any real-valued constant a. From (1), this leads to [8]

qt + aq2qx + b1qxxx + b2qxxt + b3qxtt = 0, (20)

which means that (5) transforms into

6vg2 − ag4 − 6
(

b1 − b2v + b3v2
)(

g′
)2

= 0. (21)

Thus, Equation (20) is the generalization of Equation (6) for the mKdV equation with
the dispersion triplet. This is also the generalized version of the KdV equation that was
first proposed during 1977 [8]. Finally, separating variables and integrating yields a solitary
wave solution as follows:

q(x, t) = Asec h[B(x− vt)]. (22)

Here, the inverse width is B and A is the amplitude of the wave; they are defined as

A =

√
6v
a

, (23)
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and

B =

√
v

b1 − b2v + b3v2 , (24)

which would once again imply the parameter constraint as given by (11). This time, the
amplitude of the solitary wave imposes the restriction

av > 0. (25)

Figure 2 displays the surface plot of a solitary wave (22) of the mKdV equation with
triple dispersion terms. The parameter values chosen are a = 1, v = 1, b1 = 1, b2 = 1, and
b3 = 1.
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Conservation laws

In this case, the multipliers, conserved densities, and fluxes are given as
Case 1:

Q = 1 and Tt = −2
3

b3qxt −
1
3

b2qxx − q. (26)

Case 2:

Q = q and Tt = −2
3

qb3qxt −
1
3

b2qxxq +
1
3

b3qxqt +
1
6

b2qx
2 − 1

2
q2. (27)

Case 3:
Q =

1
2b2

(
aq3 + 3b1qxx + 3b2qxt + 3b3qxt

)
, (28)

and
Tt = 2aq3 − b1b2qqxxxx + b1b2qxqxxx + 2b1b2qxx

2 − 2b1b3qqxxxt

+4b1b3qtqxxx − 2b1b3qxqxxt + 4b1b3qxtqxx − b2
2qqxxxt + b2

2qxqxxt

+2b2
2qxtqxx − 3b2b3qqxxtt + 4b2b3qtqxxt + 2b2b3qttqxx − b2b3qxqxtt

+4b2b3qxt
2 − 2b3

2qqxttt + 4b3
2qtqxtt + 4b3

2qttqxt

−2b3
2qtttqx + 6b1qqxx + 3b2qqxt + 3b2qtqx + 6b3qt

2.

(29)

Thus, for mKdV equation, the conserved quantities are

M =

∞∫
−∞

Ttdx =

∞∫
−∞

qdx =
πA
B

, (30)
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P =

∞∫
−∞

Ttdx =
1
6

∞∫
−∞

{3q2 − (b2 − 6vb3)q2
x}dx =

A2

9B
{9− B2(b2 − 6vb3)}, (31)

H =

∞∫
−∞

Ttdx =

∞∫
−∞

{
2aq3 − 6

(
b1 − v2b3

)
q2

x

}
dx=

A2

3B

{
3πaA− 4B2

(
b1 − v2b3

)}
. (32)

2.3. Power–Law KdV Equation

Now, F(q) = aqn for any real-valued constant a. From (1), this leads to

qt + aqnqx + b1qxxx + b2qxxt + b3qxtt = 0, (33)

which means that (5) transforms into

(n + 2)(n + 1)vg2 − 2agn+2 − (n + 2)(n + 1)
(

b1 − b2v + b3v2
)(

g′
)2

= 0. (34)

Finally, separating variables and integrating yields a solitary wave solution as follows:

q(x, t) = Asech
2
n [B(x− vt)]. (35)

Here, the inverse width is B and A is the amplitude of the wave; they are indicated
below as

A =

[
(n + 1)(n + 2)v

2a

] 1
n

, (36)

and

B =
n
2

√
v

b1 − b2v + b3v2 , (37)

which would once again imply the parameter constraint as given by (11). Figure 3 indicates
the surface plot of a solitary wave (35) of the power–law KdV equation with triple disper-
sion terms with n = 1/2. The parameter values chosen are a = 1, v = 1, b1 = 1, b2 = 1, and
b3 = 1.
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Conservation Laws

For the power–law KdV equation, the multipliers, densities, and fluxes are given as
Case 1:

Q = 1 and Tt = −2
3

b3qxt −
1
3

b2qxx − q. (38)
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Case 2:

Q = q and Tt = −2
3

qb3qxt −
1
3

b2qxxq +
1
3

b3qxqt +
1
6

b2qx
2 − 1

2
q2. (39)

Case 3:

Q = qnaq + b1qxxn + b2qxtn + b3nqtt + b1qxx + b2qxt + b3qtt, (40)

and
Tt = −2qnab2n2q2

x − b1b2n2qqxxxx − 4qn+1ab3nqxt − 2qn+1ab2nqxx

+4b1b3n2qtqxxx + 4b1b3n2qxxqxt − 6b1b3nqqxxxt + b1b2n2qxqxxx

−2b1b3n2qqxxxt − 2b1b3n2qxqxxt + 12b1b3nqxxqxt + 12b1b3nqtqxxx

−3b2b3nqxqxtt + 12b2b3nqtqxxt + 6b2b3nqxxqtt + 4qnab3qxqt

−3b1b2nqqxxxx + 3b1b2nqxqxxx − 6b1b3nqxqxxt − 3b2b3n2qqxxtt

−b2b3n2qxqxtt + 4b2b3n2qtqxxt + 2b2b3n2qxxqtt − 9b2b3nqqxxtt

−4qnab3n2qxqt − 6b3
2nqxqttt − 2b1b2qqxxxx + 2b1b2qxqxxx − 4b1b3qqxxxt

−4b1b3qxqxxt + 12b3
2nqtqxtt + 8b1b3qtqxxx + 8b1b3qxxqxt + 12b3

2nqxtqtt

−6b2b3qqxxtt − 2b2b3qxqxtt + 8b2b3qtqxxt + 4b2b3qxxqtt − b2
2n2qqxxxt

+b2
2n2qxqxxt + 2b1b2n2qxx

2 + 18b1nqqxx + 3b2
2nqxqxxt − 3b2

2nqqxxxt

+2qnab2qx
2 + 9b2nqxqt + 2qn+1ab2qxx + 6b1b2nqxx

2 + 4qn+1ab3qxt

+9b2nqqxt + 6b1n2qqxx + 3b2n2qqxt + 4b3
2n2qxtqtt + 4b3

2n2qtqxtt

+6b2
2nqxxqxt + 12b2b3nqxt

2 + 3b2n2qxqt − 4b3
2qqxttt + 4b2b3n2qxt

2

−2b3
2n2qqxttt − 2b3

2n2qxqttt + 2b2
2n2qxxqxt − 6b3

2nqqxttt

+12b3qt
2 + 12qn+2a + 6b2qqxt + 8b3

2qxtqtt + 6b2qxqt + 8b3
2qtqxtt

+8b2b3qxt
2 − 4b3

2qxqttt − 2b2
2qqxxxt + 4b1b2qxx

2 + 4b2
2qxxqxt

+2b2
2qxqxxt + 18b3nqt

2 + 6b3n2qt
2 + 12b1qqxx.

(41)

For power–law, the conserved quantities are

M =
∫ ∞

−∞
Ttdx =

∫ ∞

−∞
qdx =

A
B

Γ
(

1
n

)
Γ
(

1
2

)
Γ
(

1
n + 1

2

) , (42)

P =
∫ ∞
−∞ Ttdx = 1

6

∫ ∞
−∞{q

2 − (b2 − 6vb3)q2
x}dx

= A2

6n(n+4)B{n(n + 4)− 4B2(b2 − 6vb3)}
Γ( 2

n )Γ( 1
2 )

Γ( 2
n +

1
2 )

,
(43)

and
H =

∫ ∞
−∞ Ttdx =

∫ ∞
−∞

{
12aqn+2 − 6(n + 1)(n + 2)

(
b1 − v2b3

)
q2

x
}

dx

= 4A2

n(n+4)B{12naAn − 6(n + 1)(n + 2)B2(b1 − 6vb3)}
Γ( 2

n )Γ( 1
2 )

Γ( 2
n +

1
2 )

.
(44)

3. Dual-Nonlinearity (Gardner’s Equation)

This section studies Equation (1), which carries two nonlinear terms and is typically
referred to as Gardner’s equation, alternatively known as the KdV–mKdV equation. The
dispersion triplet remains. The two subsections study Gardner’s equation and its gen-
eralization to power–law nonlinearity. In each of these subsections, the traveling wave
hypothesis would yield the solitary wave solutions along with the corresponding conserva-
tion laws that are derived using the multiplier approach.
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3.1. KdV–mKdV Equation

Here, F(q) = a1q + a2q2 for any real-valued constants aj for j = 1, 2. From (1), this
leads to [8]

qt +
(

a1q + a2q2
)

qx + b1qxxx + b2qxxt + b3qxtt = 0, (45)

which means that (5) transforms into

6vg2 − (2a1 + a2g)g3 − 6
(

b1 − b2v + b3v2
)(

g′
)2

= 0. (46)

Equation (45) is the familiar KdV–mKdV equation that is here being addressed with
three sources of dispersion for the first time. This equation was studied in the past, but only
with spatial dispersion, using the semi-inverse variational principle [8]. Finally, separating
variables and integrating yields a solitary wave solution as follows:

q(x, t) =
A

D + cos h[B(x− vt)]
. (47)

Here, the inverse width is B with an external parameter D, while A is the amplitude
of the wave. The amplitude can be expressed as

A =
6v√

a2
1 + 6a2v

, (48)

and the inverse width B is the same as (10). The parameter D is given as

D =
6v√

a2
1 + 6a2v

. (49)

The inverse width B and the parameter D pose the constraint

a2
1 + 6a2v > 0. (50)

Figure 4 depicts the surface plot of a solitary wave (47) of Gardner’s equation with
triple dispersion terms. The parameter values chosen are a1 = 1, a2 = 1, v = 1, b1 = 1,
b2 = 1, and b3 = 1.
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Case 1:
Q = 1 and Tt = −2

3
b3qxt −

1
3

b2qxx − q. (51)

Case 2:

Q = q and Tt = −2
3

qb3qxt −
1
3

b2qxxq +
1
3

b3qxqt +
1
6

b2qx
2 − 1

2
q2. (52)

Case 3:
Q = 2a2q3 + 3a1q2 + 6b1qxx + 6b2qxt + 6b3qtt, (53)

and
Tt = −a2b2q3qxx − 3a2b2q2qx

2 − 2a2b3q3qxt − 6a2b3q2qtqx + 6a2q4

+12a1q3 − 6b1b2qqxxxx + 6b1b2qxqxxx + 12b1b2qxx
2 − 12b1b3qqxxxt

+24b1b3qtqxxx − 12b1b3qxqxxt + 24b1b3qxtqxx − 6b2
2qqxxxt + 6b2

2qxqxxt

+12b2
2qxtqxx − 18b2b3qqxxtt + 24b2b3qtqxxt + 12b2b3qttqxx

−6b2b3qxqxtt + 24b2b3qxt
2 − 12b3

2qqxttt + 24b3
2qtqxtt + 24b3

2qttqxt

−12b3
2qtttqx + 36b1qqxx + 18b2qqxt + 18b2qtqx + 36b3qt

2.

(54)

For Gardner’s equation, the three conserved quantities are

M =
∫ ∞

−∞
Ttdx =

∫ ∞

−∞
qdx =

2A
B

F
(

1, 1;
3
2

;
1− D

2

)
, (55)

P =
∫ ∞
−∞ Ttdx = 1

6

∫ ∞
−∞{q

2 − (b2 − 6vb3)q2
x}dx

= A2

45B

{
5F
(

2, 2; 5
2 ; 1−D

2

)
− B2F

(
4, 2; 7

2 ; 1−D
2

)}
,

(56)

and
H =

∫ ∞
−∞ Ttdx = 6

∫ ∞
−∞

{
2a1q3 + a2q4 − 6

(
b1 − v2b3

)
q2

x
}

dx

= 8A2

35B

 14a1 AF
(

3, 3; 7
2 ; 1−D

2

)
+ 3a2 A2F

(
4, 4; 9

2 ; 1−D
2

)
−21B2(b1 − v2b3

)
F
(

4, 2; 7
2 ; 1−D

2

) ,
(57)

where in (55)–(57), the Gauss’ hypergeometric function is indicated below as [1]

F(α, β; γ; z) =
∞

∑
n=0

(α)n(β)n
(γ)n

zn

n!
, (58)

with the Pochhammer symbol being

(p)n =

{
1 n = 0 ,

p(p + 1) · · · (p + n− 1) n > 0 .
(59)

The convergence of the series is defined provided

|z| < 1, (60)

which translates to
− 1 < D < 3. (61)

Finally, Rabbe’s test of convergence yields the convergence criterion

γ < α + β, (62)

which is valid for (55)–(57).
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3.2. Power–Law Nonlinearity

Here, F(q) = a1qn + a2q2n for any real-valued constant a. From (1), this leads to

qt +
(

a1qn + a2q2n
)

qx + b1qxxx + b2qxxt + b3qxtt = 0, (63)

which means that (5) transforms into

(2n + 1)(n + 2)(n + 1)vg2 − {2a1(2n + 1)gn + (n + 2)a2g2n}g2

−2(n + 1)2(n + 2)(b1 − b2v + b3v2)(g′)2 = 0.
(64)

Finally, separating variables and integrating yields a solitary wave solution as follows:

q(x, t) =
A

{D + cos h[B(x− vt)]}
1
n

. (65)

Here, the inverse width is B with an external parameter D, while A is the amplitude
of the wave. The amplitude is introduced below as

A =
(2n + 1)(n + 1)(n + 2)v√

a2
1(2n + 1)2 + (2n + 1)(n + 1)(n + 2)2a2v

, (66)

while the inverse width is

B = n
√

v
b1 − b2v + b3v2 , (67)

which poses the same constraint as in (11). The parameter D is given as

D =
(2n + 1)a1√

(2n + 1)2a2
1 + (n + 1)(n + 2)2(2n + 1)a2v

. (68)

The inverse width B and the parameter D must maintain the condition

(2n + 1)a2
1 + (n + 1)(n + 2)2a2v > 0, (69)

for the solitary waves to exist. Figure 5 displays the surface plot of a solitary wave (65)
for the power–law Gardner’s equation with triple dispersion terms with n = 1/2. The
parameter values chosen are a1 = 1, a2 = 1, v = 1, b1 = 1, b2 = 1, and b3 = 1.
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Conservation Laws

Here, the multipliers, densities, and fluxes are
Case 1:

Q = 1 and Tt = −2
3

b3qxt −
1
3

b2qxx − q. (70)

Case 2:

Q = q and Tt = −2
3

qb3qxt −
1
3

b2qxxq +
1
3

b3qxqt +
1
6

b2qx
2 − 1

2
q2. (71)

Case 3:

Q =
(2n + 1)a1qn+1 + (n + 1)a2q2n+1 +

(
2n2 + 3n + 1

)
(b1µ + b2κ + b3ν)

(2n2 + 3n + 1)b2
. (72)

The corresponding conserved density and flux are too cumbersome to construct. The
first two conservation laws are

M =
∫ ∞

−∞
Ttdx =

∫ ∞

−∞
qdx =

2A

2
1
n B

F
(

1
n

,
1
n

;
1
n
+

1
2

;
1− D

2

)Γ
(

1
n

)
Γ
(

1
2

)
Γ
(

1
n + 1

2

) , (73)

and
P =

∫ ∞
−∞ Ttdx = 1

6

∫ ∞
−∞{q

2 − (b2 − 6vb3)q2
x}dx

= A2

3.2
2
n n(n+4)B

 F
(

2
n , 2

n ; 2
n + 1

2 ; 1−D
2

)
−(b2 − 6vb3)B2F

(
2
n + 2, 2

n ; 2
n + 3

2 ; 1−D
2

)  Γ( 2
n )Γ( 1

2 )
Γ( 2

n +
1
2 )

.
(74)

4. Conclusions

The current work recovered solitary wave solutions to the KdV and Gardner’s equa-
tion, appearing with algebraic-type nonlinearities. The two model equations carry three
forms of dispersion that are a combination of spatial and temporal types. The novelty of
the work is the inclusion of these three forms of dispersion, yielding different relations for
the amplitude and inverse width of the wave with its velocity. These results collapse to
the pre-existing results that appear with third-order spatial dispersion only. The conser-
vation laws are also computed for both models with all forms of nonlinearity addressed
in the present paper. One of the inherent shortcomings of the traveling waves hypothesis
approach to retrieve solitary waves is its failure to retrieve soliton radiation. This is only
achievable with the usage of IST, which is outside the scope of the current work.

Thus, these results pave the way for several new avenues. In the future, the model
would be studied with transcendental nonlinearities, and the perturbation terms would
be included to address the models from an advanced standpoint. Such works would
include the application of the semi-inverse variational algorithms, the application of soliton
perturbation theory, and the study of multi-layered fluid flow, not to mention handling the
models numerically with the application of the Laplace–Adomian scheme, the variational
iteration approach, and others. These research works are very much anticipated and will
be presented in succession.
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