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Abstract: This paper employs Lie symmetry analysis to recover cubic–quartic optical soliton solutions
to the Lakshmanan–Porsezian–Daniel model in birefringent fibers. The results are a sequel to the
previously reported work on the same model in unpolarized fibers. Dark, singular, and straddled
optical solitons that emerged from the scheme are presented.

Keywords: solitons; birefringence; Lakshmanan–Porsezian–Daniel equation; Lie symmetry

1. Introduction

The concept of cubic–quartic (CQ) optical solitons emerged a couple of years ago
out of extreme necessity when the chromatic dispersion (CD) effect ran low. This led to
replenishing the low CD count with the CQ dispersive effect so that the necessary balance
between CD and self-phase modulation (SPF) was sustained for the existence and pro-
pel of solitons for long distances through optical fibers. Later, this concept was applied
to the Lakshmanan–Porsezian–Daniel (LPD) model [1–4], not including the well-known
and most visible one: the nonlinear Schrödinger’s equation. The vector-coupled LPD
equation in birefringent fibers was considered with the aid of the extended version of
Jacobi’s elliptic function expansion scheme in [1], where Jacobi’s doubly periodic wave
solutions are found. These solutions, in the limiting case, give rise to dark solitons, singular
solitons or periodic solutions. The generalized LPD model with arbitrary refractive index
is considered via the Jacobi and Weierstrass elliptic functions in [2], where solitary waves
corresponding to optical solitons are recovered for an arbitrary refractive index. Periodic
waves are also revealed for the classical case at n = 1 and for the new case n = 1/2. The
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LPD model is investigated, with the aid of the Ablowitz–Kaup–Newell–Segur (AKNS)
hierarchy, to discover novel soliton breathers on the zero background in [3], where the
specific conditions for the appearance of the standing and moving soliton breathers are
also derived. Additionally, simple formulas for the soliton-breather periods are structured
to understand the possibilities for controlling breather dynamics. The LPD equation in
polarization-preserving fibers is discussed by virtue of the complete discrimination system
for the polynomial method to obtain a complete list of all envelope patterns and to show
a variety of dynamical properties of the patterns in [4], where solitons, singularity, peri-
odicity, and double periodicity emerged from the exact parameter condition of existence
for each pattern. Several results have been recovered using the CQ–LPD model with its
scalar version [5–7]. The CQ–LPD equation is adopted using the Lie symmetry analysis
in [5], where straddled singular–bright optical solitons are reported using the reduced ordi-
nary differential equations that are handled using Kudryashov’s method. The perturbed
CQ–LPD model is addressed by the method of undetermined coefficients in [6], where
polarization-preserving fibers and birefringent fibers are studied. The conservation laws
for polarization-preserving fibers are also retrieved and enumerated. The existence criteria
for the displayed solitons are also presented. The perturbed CQ–LPD model is employed
for both with and without polarization in [7], where a full spectrum of soliton solutions are
retrieved using the sine-Gordon equation approach. Powerful Lie symmetry analysis has
been successfully applied to several models that arise in mathematical physics [1–4,6–13].
In particular, a successful application of Lie symmetry analysis to the scalar version of
the CQ–LPD model, yielded dark and singular solitons [5]. Lie symmetry is one of the
most powerful methods for obtaining optical solitons with the governing models in non-
linear optics. In the last few decades, Lie’s method has been described in a number of
excellent textbooks and has been applied to a number of physical and engineering mod-
els. The study of the group of infinitesimal transformations, in other words, Lie group
point transformations, has an important place in this method. The Lie symmetry method,
developed in the 19th century (1842–1899) by the Norwegian mathematician Sophus Lie,
is exceptionally algorithmic. This method systematically combines and expands famous
ad hoc methodologies for constructing optical solitons with model equations in optical
fiber communications.

Turning the page, and moving forward, it is about time to address the CQ–LPD model
in birefringent fibers when polarization-mode dispersion kicks in. The perturbation terms
are also taken into account in the vector CQ–LPD model. Lie symmetry analysis, when
applied, leads to coupled ordinary differential equations (ODEs) [14,15]. These ODEs
would be subsequently addressed using two powerful integration schemes: Kudryashov’s
method and the improved F-expansion scheme. These lead to dark and singular soliton
solutions to the model. The details of Lie symmetry analysis followed by the derivation of
the soliton solutions from the derived ODEs are detailed and exhibited in the rest of the
paper after a succinct introduction to the model.

Governıng Model

The perturbed LPD equation for propagation of CQ solitons through birefringent
fibers is given in its dimensionless form [6,7]:

iqt + ia1qxxx + b1qxxxx + (c1|q|2 + d1|r|2)q = (α1(qx)
2 + β1(rx)

2)q∗

+(γ1|qx|2 + λ1|rx|2)q + (δ1|q|2 + ζ1|r|2)qxx + (µ1q2 + ρ1r2)q∗xx
+( f1|q|4 + g1|q|2|r|2 + h1|r|4)q + i[η1(|q|2q)x + ν1(|r|2r)x

+{θ1(|q|2)x + ε1(|r|2)x}q + (τ1|q|2 + σ1|r|2)qx],

(1)

and
irt + ia2rxxx + b2rxxxx + (c2|r|2 + d2|q|2)r = (α2(rx)

2 + β2(qx)
2)r∗

+(γ2|rx|2 + λ2|qx|2)r + (δ2|r|2 + ζ2|q|2)rxx + (µ2r2 + ρ2q2)r∗xx
+( f2|r|4 + g2|q|2|r|2 + h2|q|4)r + i[η2(|r|2r)x + ν2(|q|2q)x

+{θ2(|r|2)x + ε2(|q|2)x}r + (τ2|r|2 + σ2|q|2)rx],

(2)
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where the complex-valued functions q = q(x, t) and r = r(x, t) represent wave profiles in
birefringent fibers with the complex parameter i representing

√
−1. The parameters al and

bl for l = (1, 2), are the coefficients of third-order and fourth-order dispersions, respectively.
Next, cl and fl are the coefficients of self-phase modulation, while hl , gl , and dl indicate
the effects of cross-phase modulation. The parameters ηl and νl denote self steepening.
Then, τl , εl , θl , νl , ηl , ρl , µl , and σl stem from nonlinear dispersive effects along with the
two components of birefringence. Finally, αl , βl , γl , and λl are additional nonlinear effects.

2. Lie Symmetry Analysis

The Lie symmetry method [5,14–17] is implemented in the coupled CQ–LPD model
with perturbation terms for birefringent fibers (1) and (2) in this section. To solve model (1)
and (2), the wave transformations are structured as follows:

q(x, t) = u(x, t)eiv(x,t),
r(x, t) = w(x, t)eiv(x,t),

(3)

where the real-valued functions u = u(x, t) and w = w(x, t) are the amplitude components
of the soliton, while the real-valued function v = v(x, t) is the phase component of the
soliton. Inserting Equation (3) into Equation (1), we have the real and imaginary parts:(

∂4u
∂x4

)
b1 +

{
−ua1 − 4

(
∂v
∂x

)
ub1

}
∂3v
∂x3 − 3u

(
∂2v
∂x2

)2
b1 + {−12

(
∂u
∂x

)
b1

∂v
∂x

−3
(

∂u
∂x

)
a1} ∂2v

∂x2 + {−6
(

∂v
∂x

)2
b1 − 3

(
∂v
∂x

)
a1 − 3

(
µ1
3 + δ1

3

)
u2

−w2(ρ1 + ζ1)} ∂2u
∂x2 +

(
∂v
∂x

)4
ub1 +

(
∂v
∂x

)3
ua1 + {(µ1 + α1 + δ1 − γ1)u2

+(ρ1 + β1 + ζ1 − λ1)w2}u
(

∂v
∂x

)2
+ {(η1 + τ1)u3 + w2uσ1 + w3s1} ∂v

∂x

−u(α1 + γ1)
(

∂u
∂x

)2
− u(β1 + λ1)

(
∂w
∂x

)2
− u ∂v

∂t
−u5 f1 + {−w2g1 + c1}u3 + {−w4h1 + d1w2}u = 0,

(4)

and

−3w
(
ws1 +

2
3 uε1

)
∂w
∂x + 4

(
∂u
∂x

)
b1

∂3v
∂x3 +

(
a1 + 4

(
∂v
∂x

)
b1

)
∂3u
∂x3 + [6

(
∂2u
∂x2

)
b1

−6
(

∂v
∂x

)2
ub1 − 3ua1

∂v
∂x + u{(µ1 − δ1)u2 + w2(ρ1 − ζ1)}] ∂2v

∂x2 − 4
(

∂u
∂x

)
b1

(
∂v
∂x

)3

−3
(

∂u
∂x

)
a1

(
∂v
∂x

)2
+
[
−2
{
(δ1 + α1 − µ1)u2 − 2

3 (ρ1 − ζ1)w2} ∂u
∂x − 2w

(
∂w
∂x

)
uβ1

]
∂v
∂x

+{−(3η1 + τ1 + 2θ1)u2 − w2σ1} ∂u
∂x +

(
∂4v
∂x4

)
ub1 +

∂u
∂t = 0.

(5)

Similarly, inserting Equation (3) into Equation (2), we have the real and imaginary
portions, which due to lengthy expressions, we have not written here. For the above system
of equations, let us consider a one-parameter (ε) Lie group of transformations as follows:

x∗ = x + εξ(x, t, u, v, w) + O
(
ε2),

t∗ = t + ετ(x, t, u, v, w) + O
(
ε2),

u∗ = u + εη1(x, t, u, v, w) + O
(
ε2),

v∗ = v + εη2(x, t, u, v, w) + O
(
ε2),

w∗ = v + εη3(x, t, u, v, w) + O
(
ε2),

(6)

where ξ, τ and ηl for l = 1, 2, 3 are infinitesimals and ε << 1 is a very small parameter.
The associated vector field for Equation (6) is indicated below:

V = ξ∂x + τ∂t + η1∂u + η2∂v + η3∂w. (7)
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Hence, the fourth prolongation formula [14,15] for Equation (7) is considered as

pr(4)V = V + ηt
1

∂
∂ut

+ ηt
2

∂
∂vt

+ ηt
3

∂
∂wt

+ ηx
1

∂
∂ux

+ ηx
2

∂
∂vx

+ ηx
3

∂
∂wx

+ ηxxx
1

∂
∂uxxx

+ηxxx
2

∂
∂vxxx

+ ηxxx
3

∂
∂wxxx

+ ηxxxx
1

∂
∂uxxxx

+ ηxxxx
2

∂
∂vxxxx

+ ηxxxx
3

∂
∂wxxxx

,
(8)

where ηt
1, ηt

2, ηt
3, ηx

1 , ηx
2 , ηx

3 , ηxxx
1 , ηxxx

2 , ηxxx
3 , ηxxxx

1 , ηxxxx
2 , and ηxxxx

3 represent the extended
infinitesimals. By using pr(4)V(∆) = 0 whenever ∆ = 0 in Equations (4) and (5), and
other equations obtained from Equation (2), we obtain the invariance conditions. Plugging
the extended infinitesimals into the invariance condition and equating the coefficients of
different derivative terms that are equal to zero leads to the following:

ξ = C2, τ = C1, η1 = 0, η2 = C3, η3 = 0, (9)

where Cl , l = 1, 2, 3 are arbitrary constants. Thus, we obtain only trivial symmetries.

2.1. Symmetry Reduction and Closed-Form Solutions
The transformations are employed to reduce the governing Equation (4) to the system

of ODEs in this section. The corresponding characteristic equation is indicated below

dx
ξ(x, t, u, v, w)

=
dt

τ(x, t, u, v, w)
=

du
η1(x, t, u, v, w)

=
dv

η2(x, t, u, v, w)
=

dw
η3(x, t, u, v, w)

, (10)

where ξ, τ, η1, η2, and η3 are given by Equation (9). Let us consider the following values of infinitesimals:

ξ = k1, τ = 1, η1 = 0, η2 = k2, η3 = 0, (11)

where k1 and k2 are arbitrary real numbers. Now, corresponding to Equation (11), on solving
Equation (10), the similarity variables are structured as the following:

σ = x− k1t,
u = F(σ),

v = k2t + G(σ),
w = H(σ),

(12)

along with the dependent variables F and G. For simplification, let us take the following:

F(σ) = H(σ), (13)

and on substituting Equation (12) into Equations (4) and (5) and the remaining system of equations,
we obtain the following system of equations:

(−βl − αl − γl − λl)F(F′)2 − (12blG′G′′ + 3alG′′)F′ − {(µl + ρl + ζl + δl)F2

+6bl(G′)
2 + 3alG′}F′′ + (−gl − hl − fl)F5 + {(µ1 + ρl + βl + ζl + δl + αl

−γl − λl)(G′)
2 + (sl + ηl + σl + τl)G′ + dl + cl}F3 + {al(G′)

3 + bl(G′)
4

+(−4blG′′′ + k1)G′ − 3bl(G′′)
2 − alG′′′ − k2}F + bl F′′′′ = 0,

(14)

and
(−2εl − 3sl + (−2αl − 2δl + 2ρl + 2µl − 2βl − 2ζl)G′ − τl − 3ηl − σl − 2θl)F2F′

+6bl F′′G′′ +
(
4blG′′′ − 4blG′3 − 3alG′2 − k1

)
F′ + (µl − δl + ρl − ζl)G′′F3

+(al + 4blG′)F′′′ + {
(
−6bl(G′)

2 − 3alG′
)

G′′ + blG′′′′}F = 0,
(15)

where (′) indicates the derivative with respect to σ and l = 1, 2. In Equation (15), setting

4blG
′ + al = 0, (16)

we have
G(σ) = − al

4bl
σ + C1, (17)

where C1 is arbitrary constant. In addition, with Equation (17), by setting the coefficients of F′ equal
to zero in Equation (15), we have the following:
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k1 = −
a3

l
8b2

l
. (18)

Equations (14) and (15) reduce to

−(gl + fl + hl)F5 + 3a1
2

8b1
F′′ + b1F′′′′

+
4(cl+dl)b1

2+2a1(ηl+θl+εl+sl)b1−a1
2(ζl+δl)

4b1
2 F3 = 0,

(19)

with the following parameter constraints:

µl = −ζl − ρl − δl ,
λl = 2δl + 2ζl − γl −

2b1(2εl+2θl+3sl+3ηl+σl+τl)
a1

,

αl = −3sl − 2εl − σl − 3ηl − τl − 2θl −
(2ρl−2βl−2ζl−2δl−2αl+2µl)a1

4b1
.

(20)

2.1.1. The Generalized Kudryashov’s Method
We obtain CQ optical solitons with the governing system (1) and (2) by solving the ODE (19) for

l = 1, 2. Equation (19) admits the solution form [2,12]:

F(σ) =
∑N

i=0 mi Ri(σ)

∑M
i=0 ni Rj(σ)

, (21)

where mi (i = 0, 1, 2, . . . , N) and nj (j = 0, 1, 2, . . . , M) are real-valued constants. In addition, the new
function R = R(σ) satisfies the following ODE:

R′(σ) = R2(σ)− R(σ), (22)

along with the solution

R(σ) =
1

1 + Aeσ
, (23)

where A is arbitrary constant. By the usage of balance principle in Equation (19), we obtain N = M+ 1.
By taking M = 1, we have N = 2. So, Equation (21) becomes

F(σ) =
m0 + m1R(σ) + m2R2(σ)

n0 + n1R(σ)
, (24)

where m0, m1, m2, n0, and n1 are real-valued constants. Inserting Equation (24), along with Equation
(22), into Equation (19), we arrive at the following results:

Set–I:

m0 = 0, m1 = −m2, n1 = 0, fl = −gl − hl , al = ± 2
√

30i
3 bl , k2 = − 19al

36 ,

cl = ∓
im2

2(εl+ηl+νl+θl)
√

30+(3dl+10ζl+10δl)m2
2+360n0

2al
3m2

2 ,
(25)

where m2 and n0 are arbitrary constants. Therefore, CQ straddled optical solitons with Equation (1)
are structured as

q(x, t) = − m2 A{cosh(tk1 − x)− sinh(tk1 − x)}
n0[1 + A{cosh(tk1 − x)− sinh(tk1 − x)}]2

ei{(k2+
a1

4b1
k1)t−

a1
4b1

x+C1}, (26)

and

r(x, t) = − m2 A{cosh(tk1 − x)− sinh(tk1 − x)}
n0[1 + A{cosh(tk1 − x)− sinh(tk1 − x)}]2

ei{(k2+
a1

4b1
k1)t−

a1
4b1

x+C1}. (27)

The CQ straddled optical solitons (26) and (27) are given with the conditions (18), (20), and (25)
by taking l = 1. CQ straddled optical solitons with Equation (2) are also yielded by taking l = 2.

Set–II:
m0 = −m1

2 , m2 = 0, n1 = 0, al = ± 4
√

3bl
3 ,

fl = −
−24n0

4bl+m1
4gl+m1

4hl
m1

4 , k2 =
5 a4

l
256 b3

l
,

cl = ∓

 2
√

3m1
2εl + 2

√
3m1

2ηl + 2
√

3m1
2ν1 + 2

√
3m1

2θl
+3m1

2dl − 4m1
2δl − 4m1

2ζl − 18n0
2bl


3m1

2 ,

(28)
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where m1 and n0 are arbitrary constants. Thus, CQ straddled optical solitons with Equation (1) are
indicated below:

q(x, t) = − m1[A{cosh(k1t− x)− sinh(k1t− x)} − 1]
2n0[1 + A{cosh(k1t− x)− sinh(k1t− x)}] ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}, (29)

and

r(x, t) = − m1[A{cosh(k1t− x)− sinh(k1t− x)} − 1]
2n0[1 + A{cosh(k1t− x)− sinh(k1t− x)}] ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}. (30)

The CQ straddled optical solitons are retrieved by virtue of the parameter constraints (18),
(20), and (28) by taking l = 1. CQ straddled optical solitons to Equation (2) are also revealed by
taking l = 2. Equations (29) and (30) represent optical vector solitons that are constituted by the two
polarization components of the optical field.

2.1.2. Improved F-Expansion Approach
New solitary wave solutions with Equation (1) are reported by solving the ODE (19) for l = 1, 2.

Equation (19) presumes the formal solution [5]

F(σ) =
N

∑
i=−N

Ai (b + H(σ))i, (31)

where the new function H(σ) satisfies the ODE

H′(σ) = z0 + z1H(σ) + z2H(σ)2 + z3H(σ)3, (32)

where z0, z1, z2, z3, and Ai are arbitrary constants. By the use of balance principle in Equation (19),
we obtain N = 1. So, Equation (31) reduces to

F(σ) = A−1(b + H(σ))−1 + A0 + A1(b + H(σ)). (33)

Plugging Equation (33), along with Equation (32), into Equation (19), we arrive at the
following results:

Family–1: (z2 = z3 = 0)
Set–I:

z0 = z1b, A0 = 0, A1 = 0, fl = −gl − hl , al =
2i
√

6z1bl
3 ,

cl = ± i
√

6z1
3 (ηl + εl + θl + νl)−

2z2
1

3 (ζl + δl)− dl .
(34)

Hence, the analytical solutions of Equation (1) are formulated as

q(x, t) =
A−1

ez1(k1t−x)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}, (35)

and
r(x, t) =

A−1

ez1(k1t−x)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}. (36)

The explicit solutions (35) and (36) are derived from the constraints (18), (20), and (34) by taking
l = 1. The exact solutions of Equation (2) are also obtained by taking l = 2.

Set–II:
A−1 = 0, A0 = A1 = arbitrary, fl = −gl − hl , al =

2
3 i
√

6blz1,

cl = − z1i
3 (εl + θl + νl + ηl)

√
6− 2z2

1
3 (δl + ζl)− dl .

(37)

Consequently, the explicit solutions of Equation (1) are considered as

q(x, t) =
(

A1ez1(k1t−x)C2 + A1b + A0 −
A1z0

z1

)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}, (38)

and

r(x, t) =
(

A1ez1(k1t−x)C2 + A1b + A0 −
A1z0

z1

)
ei(k2t− a2

4b2
(x−k1t)+C1). (39)

The analytical solutions (38) and (39) are provided by the conditions (18), (20), and (37) by
taking l = 1. The analytical solutions of Equation (2) are also reported by taking l = 2.

Family–2: (z3 = 0)
Set–I:
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z0 = b2z2, z1 = 2bz2, A1 = 0, fl = −gl − hl ,

cl = −
4dl al

2−δl al
2−al

2ζl+2εl al bl+2ηl al bl+2al bl νl+2al bl θl
4bl

2 .
(40)

As a result, the exact solutions of Equation (1) are retrieved as

q(x, t) = {A0 − A−1z2(C1 + k1t− x)}ei{(k2+
a1

4b1
k1)t−

a1
4b1

x+C1}, (41)

and

r(x, t) = {A0 − A−1z2(C1 + k1t− x)}ei(k2t− a2
4b2

(x−k1t)+C1). (42)

The explicit solutions (41) and (42) emerged from the conditions (18), (20), and (40) by taking
l = 1. The solutions of Equation (2) are also given by taking l = 2.

Set–II:

z0 =
z2(A1b+A0)

2

A1
2 , z1 =

2z2(A1b+A0)
A1

, A−1 = 0, fl =
(−gl−hl)A1

4+24bl z2
4

A1
4 ,

cl =
{(ζl+δl)al

2−2bl(θl+εl+ηl+νl)al−4dl bl
2}A1

2−3al
2bl z2

2

4A1
2bl

2 ,
(43)

Therefore, the analytical solutions of Equation (1) are revealed as

q(x, t) =
(
− A1

z2(C2 + (x− k1t))

)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}, (44)

and

r(x, t) =
(
− A1

z2(C2 + (x− k1t))

)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}. (45)

The exact solutions (44) and (45) are considered with the parameters (18), (20), and (43) by
taking l = 1. The explicit solutions of Equation (2) are also recovered by taking l = 2.

Set–III:

z0 = z2b2 − 3 al
2

64bl
2z2

, z1 = 2bz2, A0 = A1 = 0, fl = −gl − hl +
243al

8

2097152bl
7z2

4 A−1
4 ,

cl =
(ζl+δl)al

2−2bl(θl+εl+νl+ηl)al−4dl bl
2

4bl
2 + 81al

6

32768bl
5z2

2 A−1
2 .

(46)

Thus, CQ singular optical solitons with Equation (1) are considered as

q(x, t) = −8A−1b1z2
√

3
3a1

coth

(
a1(C2 + (x− k1t))

√
3

8b1

)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}, (47)

and

r(x, t) = −8A−1b1z2
√

3
3a1

coth

(
a1(C2 + (x− k1t))

√
3

8b1

)
ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}. (48)

The CQ singular optical solitons (47) and (48) are retrieved with the help of the parameter
constraints (18), (20), and (46) by taking l = 1. CQ singular optical solitons with Equation (2) are also
yielded by taking l = 2.

Set–IV:

z0 = z2 A0
2

A1
2 − 3al

2

64bl
2z2

, z1 = 2z2 A0
A1

, fl = −gl − hl +
24bl z2

4

A1
4 , A−1 = b = 0,

c1 =
((2δl+2ζl)al

2−4bl(εl+θl+νl+ηl)al−8dl al
2)A1

2+9al
2bl z2

2

8A1
2bl

2

(49)

Hence, CQ dark optical solitons with Equation (1) are structured as

q(x, t) = − A1
8b1 z2

[
tanh

(
a1(C2+x−k1t)

√
3

8b1

)√
3a1 − 8bb1z2

]
×ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1},

(50)

and

r(x, t) = − A1
8b1 z2

[
tanh

(
a1(C2+x−k1t)

√
3

8b1

)√
3a1 − 8bb1z2

]
×ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}.

(51)
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The CQ dark optical solitons (50) and (51) are obtained by the aid of conditions (18), (20) and (49)
by taking l = 1. CQ dark optical solitons with Equation (2) are also given by taking l = 2. Equations
(50) and (51) stand for vector dark solitons that come from the reduction in the optical field intensity.
These solitons are also less stable compared to scalar dark solitons.

Family–3: (z1 = z2 = z3 = 0)
Set–I:

z1 = 0, z2 = 0, z3 = 0, A−1 = 0, A0 = A1 = arbitrary, fl = −gl − hl ,

cl = −
−δl al

2−al
2ζl+2εl al bl+2ηl al bl+2al bl νl+2al bl θl+4dl bl

2

4bl
2 .

(52)

Consequently, the analytical solutions of Equation (1) are indicated below:

q(x, t) = {A0 + A1(z0(x− k1t) + C2 + b)}ei{(k2+
a1

4b1
k1)t−

a1
4b1

x+C1}, (53)

and
r(x, t) = {A0 + A1(z0(x− k1t) + C2 + b)}ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}. (54)

The exact solutions (53) and (54) are considered with the parameters (18), (20), and (52) by
taking l = 1. The explicit solutions of Equation (2) are also recovered by taking l = 2.

Family–4: (z0 = z3 = 0)
Set–I:

z1 = 2bz2, A−1 = A0 = 0, fl =
(−gl−hl)A1

4+24bl z2
4

A1
4 , al =

8z2bbl√
3

,

cl =
4A1

2bz2(ηl+νl+θl+εl)
√

3+(16b2(ζl+δl)z2
2−3dl)A1

2+72bl b2z2
4

3A1
2 .

(55)

As a result, CQ straddled optical solitons with Equation (1) are retrieved:

q(x, t) = A1

[
b + 2b

−1+2C2b{cosh(2bz2(x−k1t))−sinh(2bz2(x−k1t))}

]
×ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1},

(56)

and
r(x, t) = A1

[
b + 2b

−1+2C2b{cosh(2bz2(x−k1t))−sinh(2bz2(x−k1t))}

]
×ei{(k2+

a1
4b1

k1)t−
a1

4b1
x+C1}.

(57)

The CQ straddled optical solitons (56) and (57) are retrieved with the help of the parameter
constraints (18), (20), and (55) by taking l = 1. CQ straddled optical solitons with Equation (2) are
also yielded by taking l = 2.

3. Conclusions
The current work derived CQ optical solitons for the perturbed LPD model with differential

group delay. The results are confined to dark, singular, and straddled solitons. Lie symmetry analysis
yielded the ordinary differential equations that were integrated using Kudryashov’s scheme and
the improved F-expansion procedure. These two approaches have visible shortcomings. They fail
to recover the much–needed bright solitons, which are essential for handling soliton-propagation
dynamics across intercontinental distances. Thus, in future additional integration, algorithms are
to be implemented to obtain bright solitons for the governing model, which would enable one to
paint a complete picture of the governing model. Moreover, the results of this work lead to additional
studies, such as addressing the model with the aid of numerical schemes such as the variational
iteration approach and Laplace–Adomian decomposition scheme. These results will soon be visible.
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