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1. INTRODUCTION
The two sources of stable soliton transmission

across intercontinental distances are chromatic dis-
persion (CD) and self–phase modulation (SPM).
Occasionally, it is this CD that can run low. There are
a variety of approaches that can compensate for this
crisis situation. This paper utilizes two approaches.
One is the consideration of cubic–quartic (CQ) dis-
persive effects that stem from third-order dispersion
(3OD) and fourth-order dispersion (4OD) which
replaces CD. The second source is Bragg gratings that
introduces dispersive reflectivity which compensates
for the low count of CD [1–10]. The current model is
being studied with polynomial law of nonlinearity as
opposed to Kerr law. The three nonlinear terms, that
constitute polynomial law of nonlinear refractive
index, is the source of SPM for the current work. This
restructured form of soliton transmission dynamics
through fiber optic cables, having Bragg gratings, is
the model of study in this paper.

Two integration approaches identify the soliton
solutions to the model that travels down such an engi-
neered optical fiber. These are auxiliary equation
approach and an addendum to Kudryashov’s

approach [11–20]. These two schemes collectively
yield bright, dark and singular soliton solutions to the
model. The existence criteria for such solitons, with
regards to the respective parameter restrictions, are
also enumerated in the paper. These integration algo-
rithms are illustrated and are successfully imple-
mented to address the models. The details are exhib-
ited in the rest of the paper after an intro to the newly
engineered model.

1.1. Governing Model
The dimensionless form of the coupled cubic-

quartic perturbed NLSE in fiber Bragg gratings with
polynomial law nonlinearity is written in the form:
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and

(2)

where  and  represent forward and back-
ward propagation wave profile, respectively, while 

 are 3OD and  are 4OD as long as .
Then, ,  and  are the coefficients of self-phase
modulation (SPM) terms; , , , ,  and 
represent the cross-phase modulation (XPM) terms;

 represent the inter-modal dispersion and next 
are the detuning parameters. Also,  give the four
wave-mixing (4WM) effect, while  represent the
self-steepening to avoid the shock waves formulation.
Finally,  and  stem from nonlinear dispersion
coefficients.

Equations (1) and (2) represent the coupled-mode
equations for Bragg gratings with polynomial law of
nonlinearity as opposed to the usual form of Kerr law
of nonlinearity where all fibers are manufactured with
such a nonlinear form of refractive index. This poly-
nomial law of nonlinearity is a dual extension to the
Kerr type of nonlinearity and is occasionally, other-
wise, referred to as cubic–quintic–septic nonlinear
form. These additional terms are taken into consider-
ation when higher order approximations are included.
Next, the CD is replaced with CQ dispersive effects
that comprise of two sources of dispersion as opposed
to a single source. This is just to compensate for low
count of CD. In Bragg gratings, it is the dispersive
reflectivity, with 3OD and 4OD, that comes into play.
Now, the perturbation terms that stem from self-steep-
ening and nonlinear dispersion and inter-modal dis-
persion are also included. These are treated as strong
perturbation terms without stepping into beyond
slowly varying envelope approximation [11]. The
effect of Raman scattering is tacitly excluded since it is
non-Hamiltonian and is rendered to be non-integra-
ble [11]. Such is the governing model that will be han-
dled in this work, from an integrability standpoint,
which will reveal soliton solutions. It must be noted
that such a model is not yet handled experimentally
and is therefore at a pre-lab stage. Thus, at a theoreti-
cal stage, a range of mathematical properties are being
investigated into. Additional features such as retrieval
of conservation laws, studying the model with frac-
tional temporal evolution are on the horizon and form
the tip of the iceberg.
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This article is organized as follows: In Section 2,
the mathematical preliminaries are introduced. In
Sections 3 and 4, the new auxiliary equation method
and the addendum to Kudryashov’s method are
applied to retrieve and exhibit soliton solutions to the
model. In Section 5, a few conclusive statements are
worded.

2. MATHEMATICAL PRELIMINARIES

In order to solve Eqs. (1) and (2), we assume:

(3)

such that

(4)

where , ,  and  are all nonzero constants that are
to be determined, which represent soliton velocity,
soliton frequency, wave number and phase constant,
respectively. Next,  is a real function which rep-
resents the phase component of the soliton, while

 are real functions that give the shape of the
pulses. Substituting (3) and (4) into Eqs. (1) and (2),
and after separating real and imaginary parts, the real
parts are
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where  or 1. Consequently, the real parts change
to

(10)

and

(11)

while the imaginary parts become

(12)

and

(13)

The linearly independent principle applied to (12) and
(13) gives the frequency of soliton as:

(14)

the velocity of soliton as:

(15)

or
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and the constraint conditions:
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Equations (10) and (11) maintain the same form under
the constraint conditions:

(19)

From (19), we have:
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Now, we balance  and  in Eq. (10) to get the bal-
ance number . Since the balance number is
not integer, we take into consideration the transforma-
tion
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where  is a new positive function of . Substitut-
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Thus, from (19), one gets

(24)

Consequently, Eq. (22) changes to:

(25)

where

(26)

Now, Eq. (25) will be solved by using the methods as
enumerated in the subsequent sections:

3. THE NEW AUXILIARY EQUATION METHOD
According to this method, Eq. (25) has the formal

solution:
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where  satisfies:
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Here  and  are constants to be determined such
that  and , where  is a positive integer.
We determine the balancing number  of (27) by
using the homogeneous balancing method as follows:

If  N, ,  and
hence
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It is well known [19] that Eq. (28) has the following
types of solutions:
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where .

Type 2: If ,  –
, , then Eq. (28) admits the singular

soliton solutions:

(31)

where .

Type 3: If ,  –
, , then Eq. (28) admits the dark soliton

solutions as:

(32)

and the singular soliton solutions as:

(33)

Balancing  and  in Eq. (25) by using (29),
one recovers the balancing number . From (27),
one obtains the formal solution of Eq. (25) as:
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where   are constants to be determined
such that . Substituting (34) and (28) with

 into Eq. (25), collect-
ing all the coefficients of   = 0,
1, ..., 24,  and setting these coefficients to
zero, we have a set of algebraic equations which can be
solved using the Maple to arrive at the following
results:
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(I) The bright soliton solutions:
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(II) The singular soliton solutions:
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exist along as the constraint condition (36) holds.
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4. ADDENDUM TO KUDRYASHOV’S METHOD
For this method, Eq. (25) has the following solu-
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Now, by balancing  and  in Eq. (25), one gets
(49)

Next, we will discuss the following cases:
Case 1: If we choose , then . Thus, from

(45) we conclude that Eq. (25) has the formal solution:

(50)

where  and  are constants to be determined with
 while  satisfies the first order auxiliary

ordinary differential equation (ODE):

(51)

where  is a constant. Substituting (50) along with (51)
into Eq. (25), collecting all the coefficients of each

power of   ( , )
and setting each of these coefficients to zero, we have
a system of algebraic equations which can be solved by
using the Maple to recover:

(52)

and

(53)

provided  and . Substituting (52) along
with (48) into Eq. (50), one gets the combo bright-sin-
gular soliton solutions of Eqs. (1) and (2) in the forms:

(54)

and

(55)

Especially, if we set  in (54) and (55), then
Eqs. (1) and (2) have the bright soliton solutions as:

(56)

and

(57)

while, if , one gets the singular soliton solu-
tion of Eqs. (1) and (2) as:

(58)

and

(59)

The solutions (54)–(59) exist under the conditions (53).
Case 2: If we choose , then . Thus, we

derive from (41) that Eq. (21) has the formal solution:

(60)

where ,  and  are constants to be determined,
such that  and the function  satisfies the
first order auxiliary ODE

(61)

where  is a constant. Substituting (60) and (61) into
Eq. (25), collecting all the coefficients of each power
of   ( , ) and
setting each of these coefficients to zero, we have a sys-
tem of algebraic equations which can be solved by
using the Maple to obtain:

(62)

and

(63)

provided  and . Substituting (62) along
with (48) into Eq. (60), we have the combo bright-sin-
gular soliton solutions of Eqs. (1) and (2) in the forms:

( )v3 iU U 8U
= .N p

= 1p = 1N

( ) ( )ξ = δ + δ ξ0 1 ,U R

δ0 δ1

δ ≠2 0 ( )ξR

( ) ( ) ( ) ξ = ξ − Γ ξ < ≠ 
2 2 22' 1 ln , 0 1,R R R K K

Γ

( )[ ]ξ 1mR ( )[ ]ξ 2' mR =1 0,1,...,8m =2 0,1m

 Γδ = δ = − Δ 
e

1
2 4

0 2
7

8800, ln ,
81

K

Δ = − Δ =2 4
0 1

68 256ln , ln ,
9 81

K K

<7Δ 0 = ±e 1

( ) ( ) ( )[ ] ( ) ( )[ ]
( )−κ +ω +θ

  Γ  = − Δ + Γ − + − Γ −    v v

0

21
32 6

2 2
7

880 4 ln, ,
81 4 cosh ln 4 sinh ln

i x tA Kq x t e
A x t K A x t K

( ) ( ) ( )[ ] ( ) ( )[ ]
( )−κ +ω +θ

  Γ  = Π − Δ + Γ − + − Γ −    v v

0

21
32 6

2 2
7

880 4 ln, .
81 4 cosh ln 4 sinh ln

i x tA Kr x t e
A x t K A x t K

= 2Γ 4A

( )
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×
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K x t K e
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×

Δ 

− v
0

1
6

7
2
3
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81

ln  sech  ln ,i x t
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K x t K e

= − 2Γ 4A

( )
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×



− v
0

1
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7
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81
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1
6

7
2
3
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81

ln  csc ln .h  i x t

r x t

K x t K ev

= 2p = 4N

( ) ( ) ( )ξ = δ + δ ξ + δ ξ2
0 1 2 ,U R R

δ0 δ1 δ2

δ ≠2 0 ( )ξR

( ) ( ) ( ) ξ = ξ − Γ ξ < ≠ 
2 4 22' 1 ln , 0 1,R R R K K

Γ

( )[ ]ξ 1mR ( )[ ]ξ 2' mR =1 0,1,2,...,16m =2 0,1m
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(64)

and

(65)

In particular, if we set  in (64) and (65), then
one gets the bright soliton solution of Eqs. (1) and (2)
as:

(66)

and

(67)

while, if , we have the singular soliton solu-
tion of Eqs. (1) and (2) as:

(68)

and

(69)

The solutions (64)–(69) exist under the conditions (63).
Similarly, we can find many other solutions by

choosing other values for  and N.

5. CONCLUSIONS
The current paper retrieved bright dark and singular

soliton solutions in fiber Bragg gratings that was studied
with polynomial law of nonlinear refractive index hav-
ing cubic-quartic form of dispersive reflectivity. The
results are impressive and indeed promising for future
work. The model is yet to be studied for location of the
conservation laws [11–20]. Additional solutions can be
retrieved by the aid of Lie symmetry and other such
powerful integration schemes. The model is yet to be

studied with time-dependent coefficients as well as with
fractional temporal evolution. The results of those
research activities will be reported with time.
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