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Introduction

Performance enhancement is one of the key issues in the study
of soliton propagation through optical waveguides. In this context,
there are various kinds of waveguides that has been lately consid-
ered [1–10]. A few of them are optical fibers, couplers, PCF, optical
metamaterials and metasurfaces. This paper focuses on a particular
issue in the soliton propagation dynamics through optical meta-
materials. It is the aspect of conservation laws. No study of a phys-
ical phenomena is complete without a listing of conserved
quantities. While there are several papers visible in this area, it
was never reported earlier about conserved quantities for soliton
propagation through such metamaterials. This paper thus fills in
the gap. The conservation laws for optical metamaterials are pre-
sented when a few Hamiltonian type perturbation terms are taken
into account. There are two types of nonlinearity that successfully
retrieves these conserved densities by the aid of Lie symmetry
analysis. These are Kerr law and parabolic law. The conserved
quantities are subsequently computed from bright 1-soliton solu-
tions that were reported earlier. These are detailed in the following
sections.
Governing equation

The dynamics of solitons in optical metamaterials is governed
by the nonlinear Schrödinger’s equation (NLSE) which in the
dimensionless form is given by [2,10]

iqt þ aqxx þ F qj j2
� �

q ¼ iaqx þ ik qj j2q
� �

x
þ im qj j2

� �
x
q

þ h1 qj j2q
� �

xx
þ h2 qj j2qxx þ h3q2q�

xx ð1Þ

Eq. (1) is the NLSE that is studied in the context of metamateri-
als. Here in (1), a and b are the group velocity dispersion and the
self-phase modulation terms respectively. This pair produces the
delicate balance between dispersion and nonlinearity that
accounts for the formation of the stable solitons.On the right-
hand side k represents the self-steepening term in order to avoid
the formation of shocks and m is the nonlinear dispersion,while a
represents the inter-modal dispersion. This arises from the fact
that group velocity of light in multi-mode fibers depends on chro-
matic dispersion as well as the propagation mode involved. Next, hj
for j ¼ 1;2;3 are the perturbation terms that appear in the context
of metamaterials. Finally, the independent variables are x and t
that represent spatial and temporal variables respectively with
the dependent variable qðx; tÞ being the complex-valued wave
profile.
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The real-valued algebraic functional Fmust possess smoothness

of the complex-valued function F qj j2
� �

q : C ! C. Treating the com-

plex plane C as two-dimensional linear space R2, the function

F qj j2
� �

q is k times continuously differentiable provided

F qj j2
� �

q 2 [1
m;n¼1

Ckðð�n;nÞ � ð�m;mÞ; R2Þ: ð2Þ
Conserved densities

In order to determine conserved densities and fluxes, we resort
to the invariance and multiplier approach based on the well known
result that the Euler-Lagrange operator annihilates a total diver-
gence [5]. Firstly, if ðTt ; T xÞ is a conserved vector corresponding
to a conservation law, then

DtT
t þ DxT

x ¼ 0 ð3Þ

along the solutions of the differential equation (de = 0). For a scalar
pde Eðx; t; q; qð1Þ; . . .Þ ¼ 0, if there exists a nontrivial differential func-
tion Q, called a ‘multiplier’, such that

Eq QE½ � ¼ 0

then QE is a total divergence, i.e.,

QE ¼ DtT
t þ DxT

x

for some (conserved) vector ðTt; T xÞ – Eq is the respective Euler–
Lagrange operator. Thus, a knowledge of each multiplier Q leads
to a conserved vector determined by, amongst other things, a
Homotopy operator.

E1ðx; t;u; v;uð1Þ;v ð1Þ; . . .Þ ¼ 0; E2ðx; t;u; v; uð1Þ;v ð1Þ; . . .Þ ¼ 0 ð4Þ

For a system (4), Q ¼ ðQ1;Q2Þ, say, so that

Q1 E1
� �

þ Q2 E2
� �

¼ DtT
t þ DxT

x

and

E u;vð Þ DtT
t þ DxT

x� � ¼ 0:

In each case, Tt is the conserved density.

Kerr law

This law is also known as the cubic nonlinearity and is consid-
ered to be the simplest known form of nonlinearity. Most optical
fibers that are commercially available nowadays obey this Kerr
law of nonlinearity. Therefore,in this first section the attention will
be on optical metamaterials with cubic nonlinearity. In this case

FðuÞ ¼ bu

for some non-zero constant b. Therefore, the governing equation
given by ( 1) with Kerr law nonlinearity reduces to [2,10]

iqt þ aqxx þ b qj j2q ¼ iaqx þ ik qj j2q
� �

x
þ im qj j2

� �
x
q

þ h1 qj j2q
� �

xx
þ h2 qj j2qxx þ h3q2q�

xx ð5Þ

In order to locate the conservation laws for Eq. (5), the complex
valued function is split into real and imaginary parts as:

qðx; tÞ ¼ uðx; tÞ þ ivðx; tÞ:
This leads to the decomposition of Eq. (5) as

� h2v2uxx � h3u2uxx � 6h1uu2
x � 2h1uv2

x � h2u2uxx � 3h1u2uxx

� h1v2uxx þ buv2 þ 2mv2vx þ h3v2uxx þ ku2vx þ 3kv2vx

� 4h1vuxvx � 2h1uvvxx þ 2muvux � 2h3uvvxx þ 2kuvux

� v t þ bu3 þ avx þ auxx ¼ 0;�aux þ bv3 þ avxx � h2u2vxx

� h2v2vxx � 2h1vu2
x � 6h1vv2

x � h1u2vxx � 3h1v2vxx � kv2ux

� 2mu2ux þ h3u2vxx � 3ku2ux � h3v2vxx þ bu2v � 2h3uvuxx

� 2h1uvuxx � 4h1uuxvx � 2kuvvx � 2muvvx þ ut ¼ 0: ð6Þ
The lengthy calculations for the system (6) lead to the following

multipliers

Q1 ¼ �c1v h1 þ h2 � h3ð Þu2 þ h1 þ h2 � h3ð Þv2 � a
� �h3�h2þh1

h1þh2�h3

Q2 ¼ c1u h1 þ h2 � h3ð Þu2 þ h1 þ h2 � h3ð Þv2 � a
� �h3�h2þh1

h1þh2�h3

ð7Þ

For the multipliers (7), we can not obtain conservation laws of
the system (6) because of only implemented for integer exponents.

Case-1:
If we set h1 ¼ h2 ¼ h3 ¼ 1 in Eq. (5), for example, we have the

following multipliers and corresponding conserved vectors

Q1 ¼ v �u2 � v2 � a
� �

;

Q2 ¼ �u �u2 � v2 þ a
� �

;
ð8Þ

Tt ¼ �ðu2 þ v2Þð�u2 � v2 þ 2aÞ
4

;

T x ¼ ðu2 þ v2Þð�u2 � v2 þ 2aÞa
4

þ ðu2 þ v2Þ2ð�2u2 � 2v2 þ 3aÞk
4

þ ðu2 þ v2Þ2ð�2u2 � 2v2 þ 3aÞm
6

þ v �u2 � v2 þ a
� �2

ux

� u �u2 � v2 þ a
� �2vx ð9Þ

Thus, the conserved density for (5) is

Ut ¼ � qj j2ð� qj j2 þ 2aÞ
4

ð10Þ

Case-2:
If we set h1 ¼ 3; h2 ¼ 1; h3 ¼ 2 in Eq. (5), for example, we have

the following multipliers and corresponding conserved vectors

Q1 ¼ �v �2u2 � 2v2 þ a
� �2

;

Q2 ¼ u �2u2 � 2v2 þ a
� �2

;
ð11Þ

Tt ¼ ðu2 þ v2Þð4u4 þ 8u2v2 þ 4v4 � 6au2 � 6av2 þ 3a2Þ
6

;

T x ¼ �ðu2 þ v2Þð4u4 þ 8u2v2 þ 4v4 � 6au2 � 6av2 þ 3a2Þa
6

� ðu2 þ v2Þ2ð6u4 þ 12u2v2 þ 6v4 � 8au2 � 8av2 þ 3a2Þk
4

� ðu2 þ v2Þ2ð6u4 þ 12u2v2 þ 6v4 � 8au2 � 8av2 þ 3a2Þm
6

� v �2u2 � 2v2 þ a
� �3

ux þ u �2u2 � 2v2 þ a
� �3vx ð12Þ

and

Ut ¼ qj j2ð4 qj j4 � 6a qj j2 þ 3a2Þ
6

: ð13Þ
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Case-3:
If we set h1 ¼ 2; h2 ¼ 1; h3 ¼ 2 in Eq. (5), for example, we have

the following multipliers and corresponding conserved vectors

Q1 ¼ v �u2 � v2 þ a
� �3

;

Q2 ¼ �u �u2 � v2 þ a
� �3

;
ð14Þ
Tt ¼ �ðu2 þ v2Þð�u2 � v2 þ 2aÞðu4 þ 2u2v2 þ v4 � 2au2 � 2av2 þ 2a2Þ
8

;

T x ¼ ðu2 þ v2Þð�u2 � v2 þ 2aÞðu4 þ 2u2v2 þ v4 � 2au2 � 2av2 þ 2a2Þa
8

þ 3ðu2 þ v2Þ2ð�4u6 � 12u4v2 � 12u2v4 � 4v6 þ 15au4 þ 30au2v2 þ 15av4 � 20a2u2 � 20a2v2 þ 10a3Þk
40

þ ðu2 þ v2Þ2ð�4u6 � 12u4v2 � 12u2v4 � 4v6 þ 15au4 þ 30au2v2 þ 15av4 � 20a2u2 � 20a2v2 þ 10a3Þm
20

þ v �u2 � v2 þ a
� �4

ux � u �u2 � v2 þ a
� �4vx

ð15Þ
and

Ut ¼ � qj j2ð� qj j2 þ 2aÞð qj j4 � 2a qj j2 þ 2a2Þ
8

: ð16Þ

Case-4:
If we set h1 ¼ 5; h2 ¼ 1; h3 ¼ 4 in Eq. (5), for example, we have

the following multipliers and corresponding conserved vectors

Q1 ¼ �v �2u2 � 2v2 þ a
� �4

;

Q2 ¼ u �2u2 � 2v2 þ a
� �4

;
ð17Þ
Tt ¼
u2 þ v2
� �

16ðu2 þ v2Þ4 � 40aðu2 þ v2Þ3 þ 40a2ðu2 þ v2Þ2 � 20a3ðu2 þ v2Þ þ 5a4
� �

10

T x ¼ �
u2 þ v2
� �

16ðu2 þ v2Þ4 � 40aðu2 þ v2Þ3 þ 40a2ðu2 þ v2Þ2 � 20a3ðu2 þ v2Þ þ 5a4
� �

a

10

�
u2 þ v2
� �2 80ðu2 þ v2Þ4 � 192aðu2 þ v2Þ3 þ 180a2ðu2 þ v2Þ2 � 80a3ðu2 þ v2Þ þ 15a4

� �
k

20

�
u2 þ v2
� �2 80ðu2 þ v2Þ4 � 192aðu2 þ v2Þ3 þ 180a2ðu2 þ v2Þ2 � 80a3ðu2 þ v2Þ þ 15a4

� �
m

30
� v �2u2 � 2v2 þ a

� �5
ux þ u �2u2 � 2v2 þ a

� �5vx

ð18Þ
and

Ut ¼
qj j2 16 qj j8 � 40a qj j6 þ 40a2 qj j4 � 20a3 qj j2 þ 5a4

� �
10

: ð19Þ

Thus, we have infinitely many conservation laws of the system
(6).

The 1-soliton solution to the perturbed NLSE (5) is now given by
[2,10]

qðx; tÞ ¼ Asech½Bðx� ctÞ�ei �jxþxtþh0ð Þ; ð20Þ
where A is the amplitude of the soliton, B is the inverse width of the
soliton. From the phase component, j is the soliton frequency, x is
the wave number of the soliton and h0 is the phase constant. The
speed of the soliton is given by

c ¼ �a� 2aj: ð21Þ
For the four cases discussed above, the conserved quantities are
now given by:
I1 ¼
Z 1

�1
2a qj j2 � qj j4

� �
dx

¼ A2
Z 1

�1
2asech2s� A2 sech4s

� �
dx ¼ 4A2

3B
3a� A2

� �
; ð22Þ

where the notation

s ¼ Bðx� ctÞ ð23Þ
is adopted here.
I2 ¼
Z 1

�1
3a2 qj j2 � 6a qj j4 þ 4 qj j6

� �
dx

¼ A2
Z 1

�1
3a2 sech2s� 6aA2 sech4sþ 4A4 sech6s

� �
dx

¼ 2A2

15B
45a2 � 60aA2 þ 32A4

� �
ð24Þ

I3 ¼
Z 1

�1
qj j2 2a� qj j2

� �
2a2�2a qj j2þ qj j4

� �
dx

¼
Z 1

�1
4a3 qj j2�6a2 qj j4þ4a qj j6� qj j8

� �
dx

¼A2
Z 1

�1
4a3 sech2s�6a2A2 sech4sþ4aA4 sech6s�A6 sech8s

� �
dx

¼ 8A2

35B
35a3�35a2A2þ280aA4�4A6

� �
ð25Þ
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I4 ¼
Z 1

�1
5a4 qj j2 � 20a3 qj j4 þ 40a2 qj j6 � 40a qj j8 þ 16 qj j10

� �
dx

¼ A2
Z 1

�1
5a4 sech2s� 20a3A2 sech4sþ 40a2A4 sech6s

�

� 40aA6 sech8sþ 16A8 sech10s
�
dx ¼ 2A2

315B
1575a4 � 12600a3A2

�
þ 6720a2A4 � 5760aA6 þ 2048A8

�
ð26Þ
Parabolic law

This law is alternatively known as the cubic–quintic nonlinear-
ity and is studied in nonlinear interaction between Langmuir
waves and electrons. It describes the nonlinear interaction
between the high frequency Langmuir waves and the ion-
acoustic waves by pondermotive forces. It takes the form

FðuÞ ¼ b1uþ b2u2

for non-zero constants b1 and b2. For parabolic law medium, the
NLSE given by (1) changes to [10]

iqt þ aqxx þ b1 qj j2 þ b2 qj j4
� �

q ¼ iaqx þ ik qj j2q
� �

x

þ im qj j2
� �

x
qþ h1 qj j2q

� �
xx
þ h2 qj j2qxx þ h3q2q�

xx ð27Þ

Eq. (27) splits as

h3uxxv2 � 3h1uxxu2 � h1uxxv2 � h2uxxu2 � h2uxxv2 � h3uxxu2

þ auxx þ b2u5 þ b1u3 þ avx � v t þ 2kuvux þ 2muvux � 4h1vuxvx

� 2h3vxxuv � 2h1vxxuv þ ku2vx þ 3kv2vx þ 2mv2vx þ 2b2u3v2

þ b2uv4 þ b1uv2 � 6h1uu2
x � 2h1uv2

x ¼ 0;

� aux þ b1v3 þ avxx þ b2v5 � h2u2vxx � h2v2vxx � 6h1vv2
x

� 3h1v2vxx � 2h1vu2
x � kv2ux � 2mu2ux � h1u2vxx þ 2b2u2v3

� 3ku2ux � h3v2vxx þ h3u2vxx þ b1u2v þ b2u4v � 2h3uvuxx

� 4h1uuxvx � 2muvvx � 2h1uvuxx � 2kuvvx þ ut ¼ 0 ð28Þ
For the system (28), we obtain Eqs. (7)–(19).
For parabolic law of nonlinearity, the bright 1-soliton solution

in optical metamaterials is given by [10]:

qðx; tÞ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ cosh½Bðx� ctÞ�

p ei �jxþxtþh0ð Þ; ð29Þ

where D is a newly introduced parameter whose restriction will be
given later. The remaining parameters have the same interpreta-
tions as Kerr law soliton. The conservation laws for parabolic law
nonlinearity are now given by

I1 ¼
Z 1

�1
2a qj j2 � qj j4

� �
dx

¼ A2
Z 1

�1

2a
Dþ cosh s

� A2

Dþ cosh sð Þ2
( )

dx

¼ 2A2

3B
6aF 1;1;

3
2
;
1� D
2

	 

� A2F 2;2;

5
2
;
1� D
2

	 
� �
ð30Þ

I2 ¼
Z 1

�1
3a2 qj j2 � 6a qj j4 þ 4 qj j6

� �
dx

¼ A2
Z 1

�1

3a2

Dþ cosh s
� 6aA2

Dþ cosh sð Þ2
þ 4A4

Dþ cosh sð Þ3
( )

dx

¼ 2A2

15B
45a2F 1;1;

3
2
;
1� D
2

	 

� 30aA2F 2;2;

5
2
;
1� D
2

	 
�

þ 8A4F 3;3;
7
2
;
1� D
2

	 
�
ð31Þ
I3 ¼
Z 1

�1
qj j2 2a� qj j2

� �
2a2 � 2a qj j2 þ qj j4

� �
dx

¼
Z 1

�1
4a3 qj j2 � 6a2 qj j4 þ 4a qj j6 � qj j8

� �
dx

¼ A2
Z 1

�1

4a3

Dþ cosh s
� 6a2A2

Dþ cosh sð Þ2
þ 4aA4

Dþ cosh sð Þ3
(

� A6

Dþ cosh sð Þ4
)
dx ¼ 4A2

105B
210a3F 1;1;

3
2
;
1� D
2

	 
�

� 105a2A2F 2;2;
5
2
;
1� D
2

	 

þ 28aA4F 3;3;

7
2
;
1� D
2

	 


� 3A6F 4;4;
9
2
;
1� D
2

	 
�
ð32Þ
I4 ¼
Z 1

�1
5a4 qj j2 � 20a3 qj j4 þ 40a2 qj j6 � 40a qj j8 þ 16 qj j10

� �
dx

¼ A2
Z 1

�1

5a4

Dþ cosh s
� 20a3A2

Dþ cosh sð Þ2
þ 40a2A4

Dþ cosh sð Þ3
(

� 40aA6

Dþ cosh sð Þ4
þ 16A8

Dþ cosh sð Þ5
)
dx

¼ 2A2

315B
1575a4F 1;1;

3
2
;
1� D
2

	 

� 2100a3A2F 2;2;

5
2
;
1� D
2

	 
�

þ 1680a2A4F 3;3;
7
2
;
1� D
2

	 

� 720aA6F 4;4;

9
2
;
1� D
2

	 


þ 128A8F 5;5;
11
2

;
1� D
2

	 
�
ð33Þ

Here, in (30)–(33) Gauss’ hypergeometric function is defined as:

F a;b; c; zð Þ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
ð34Þ

and the Pochhammer symbol is

pð Þn ¼ 1 n ¼ 0;
pðpþ 1Þ � � � ðpþ n� 1Þ n > 0:

�
ð35Þ

The convergence criteria for hypergeometric function is

jzj < 1: ð36Þ

which, for (30)–(33), implies

�1 < D < 3: ð37Þ
Furthermore, Rabbe’s criteria of convergence implies

c < aþ b; ð38Þ

which is valid for all of the hypergeometric functions listed above.
Conclusions

This paper retrieved conservation laws for solitons in optical
metamaterials by the aid of Lie symmetry analysis. There are two
forms of nonlinear media that are studied in this paper, which
are Kerr law and parabolic law. Three of the important laws are
not included in this paper since it is not possible to retrieve con-
served densities for power law, dual-power law and logarithmic
law by Lie symmetry. However, this paper is encouraging to seek
for such densities for various other laws in the context of optical
metamaterials. The results with those additional laws will be
reported in future.
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