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Abstract—Here, optical soliton perturbation with quadratic-cubic nonlinearity has been discussed by
applying Lie symmetry and group invariants. The perturbation terms include third and fourth order
dispersions in addition to self-steepening, intermodal dispersion and higher order dispersion effects. Using
presented algorithms, Bright and dark soliton solutions are revealed.
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1. INTRODUCTION

In the field of mathematical physics, optical soliton
perturbation has attracted researchers due to pre-
dominant applications to telecommunications indus-
try. While several forms of non-Kerr laws of nonlin-
earity are visible and studied across the globe, this
paper will study a particular form of such law. It is the
quadratic-cubic (QC) nonlinearity that first appeared
in the literature a few years ago. This form of optical
fibers gained popularity ever since and several papers
were published with such nonlinearity with the inclu-
sion of Hamiltonian type perturbation terms [1−4].

Besides these popular integration schemes, there
is a powerful analytical approach that is centuries old
and is yet popular and still flourishing [5−8]. This is
the Lie symmetry analysis. Several forms of nonlin-
ear evolution equations have been fruitfully addressed
using this method during the past [9−11]. This
paper will address perturbed nonlinear Schrödinger’s
equation (NLSE) with QC nonlinearity using this
technique. The perturbation terms include third order
dispersion (3OD) and fourth order dispersion (4OD)
as well as self-steepening effect along with intermodal
dispersion and nonlinear dispersion. The nonlinear
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perturbative effects due to self-steepening and non-
linear dispersion appear with full nonlinearity in order
to maintain the model on a generalized flavor. The
detailed analysis for the extraction of bright and dark
solitons are explored.

1.1. Governing Model

Governing model is perturbed NLSE with QC
nonlinearity, in dimensionless form is given as [1−3]

iqt + aqxx +
(
b1|q| + b2|q|2

)
q

= i
[
αqx − γqxxx − iσqxxxx

+ λ
(
|q|2mq

)
x

+ θ
(
|q|2m

)
x
q
]
, (1)

where x and t are spatial and temporal variables;
q(x, t) the complex-valued wave profile; a, b1, and b2

represent the group velocity dispersion, quadratic and
cubic nonlinearities, respectively; α the intermodal
dispersion; γ and σ are 3OD and 4OD, respectively;
θ and m> 0 denote the nonlinear dispersion and non-
linearity parameter, respectively. To avoid the for-
mation of shock waves, the coefficient λ due to self-
steepening is included. .

2. LIE GROUP ANALYSIS

The concept of continuous symmetry is formal-
ized by Lie groups and, thus, become a part of the
foundation of mathematics. The main motivation for
investigating symmetries of differential equations is
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mapping of known solutions to other solutions, construction of invariant solutions, detection of linearizing
transformation, etc. The key idea of Lie theory of symmetry analysis of differential equations relies on the
invariance under a transformation of independent and dependent variables. In this section, we will perform Lie
symmetry analysis [4−10] for Eq. (1). Consider

q(x, t) = u(x, t) + iv(x, t). (2)

From (1) after using (2), the real and imaginary parts are

−vt + auxx + b1u
√

u2 + v2 + b2u(u2 + v2) = −αvx + γvxxx + σuxxxx

− m(λ + θ)(u2 + v2)m−1(2uvux + 2v2vx) − λ(u2 + v2)mvx, (3)

and

ut + avxx + b1v
√

u2 + v2 + b2v(u2 + v2) = αux − γuxxx + σvxxxx

+ m(λ + θ)(u2 + v2)m−1(2u2ux + 2uvvx) + λ(u2 + v2)mux. (4)

One-parameter Lie group of transformations:

u∗ =⇒ u + εη(x, t, u, v), v∗ =⇒ v + εφ(x, t, u, v),

x∗ =⇒ x + εξ(x, t, u, v), t∗ =⇒ t + ετ(x, t, u, v),
(5)

where ε is an infinitesimal parameter. The associated vector field with the above group of transformations can
be written as

V = ξ(x, t, u, v)
∂

∂x
+ τ(x, t, u, v)

∂

∂t
+ η(x, t, u, v)

∂

∂u
+ φ(x, t, u, v)

∂

∂v
. (6)

Applying the second prolongation pr(2)V of V to Eqs. (3) and (4), we find that the coefficient functions
ξ, τ, η, φ must satisfy the invariance condition

−φt + aηxx + b1

[
η
√

u2 + v2 +
u(uη + vφ)√

u2 + v2

]
+ b2(3u2η + 2uvφ + ηv2)

= −λ
[
(u2 + v2)mφx

]
− λ

[
2mvx(u2 + v2)m−1(uη + vφ)

]
− m(λ + θ)

×
[
(u2 + v2)m−1(2uvηx + 2uuxφ + 2uxvη + 2v2φx + 4vvxφ)

]

− 2m(m − 1)(λ + θ)(u2 + v2)m−2(uη + vφ)(2uvux + 2v2vx) + γφxxx + σηxxxx − αφx, (7)

and

ηt + aφxx + b1

[
(φ

√
u2 + v2 +

v(uη + vφ)√
u2 + v2

]
+ b2(3v2φ + 2uvη + φu2)

= λ
[
(u2 + v2)mηx

]
+ 2mλux(u2 + v2)m−1(uη + vφ) + m(λ + θ)(u2 + v2)m−1

× (2u2ηx + 4uuxη + 2uvφx + 2uφvx + 2vvxη) + 2m(m − 1)(λ + θ)(u2 + v2)m−2

× (uη + vφ)(2u2ux + 2uvvx) − γηxxx + σφxxxx + αηx, (8)

where ηt, φt, ηx, φx, ηxx, φxx, ηxxx, φxxx, ηxxxx, φxxxx are extended (prolonged) infinitesimals acting on an
enlarged space that includes all derivatives of the dependent variables ut, vt, ux, vx, uxx, vxx, uxxx, vxxx, uxxxx,
vxxxx. From (7) and (8), by replacing differential coefficients to zero, the infinitesimals are determined. The
following obtained differential equations in η, φ, ξ, and τ that need to be satisfied:

PHYSICS OF WAVE PHENOMENA Vol. 26 No. 4 2018



314 ASMA et al.

(i) ξu = 0, ξv = 0,

(ii) τx = 0, τu = 0, τv = 0,

(iii) φu = 0, φvv = 0,

(iv) ηx = 0, ηv = 0, ηuu = 0,

(v) − ηu + 4ξx = 0,

(vi) − 3γφxv + 3γξxx = 0,

(vii) τt − φv = 0,

(viii) − φv + ξx = 0,

(ix) − v2λξx − v2ξxθ + v2φvλ + v2φvθ + λuη + 3λvφ + 2θvφ, = 0,

(x) 4m(m − 1)(λ + θ)v2(u2 + v2)m−2(uη + vφ) = 0,

(xi) αφv + γξxxx − αξx + ξt = 0,

(xii) 4m(m − 1)(λ + θ)uv(u2 + v2)m−2(uη + vφ) = 0,

(xiii) − 2m(λ + θ)(u2 + v2)m−1(uvξx − uvηu − uφ − vη) = 0,

(xiv) σξxxxx − aξxx = 0,

(xv) − φv + 3γξx = 0,

(xvi)
b1uvφ√
u2 + v2

+
b1u

2η√
u2 + v2

+ 2b2uvφ − φt + b1η
√

u2 + v2 + b2ηv2 + 3b2u
2η = 0.

(9)

The general solution of this large system provides following forms for the infinitesimal elements η, φ, ξ,
and τ :

ξ = C1, τ = C2, η = 0, φ = 0, (10)

where C1, C2 are arbitrary constants. Obtained symmetries reduce by applying characteristic equations:

dx

ξ
=

dt

τ
=

du

η
=

dv

φ
. (11)

For (1), solving (11), after applying symmetries, we get

ζ = x − wt, q(x, t) = F (ζ) exp
[
iG(ζ)

]
. (12)

3. REDUCED ODEs AND SOLITON SOLUTIONS TO NLSE

The suitable similarities obtained in (12) reduce (1) to the following ordinary differential equations:

wF (ζ)G′(ζ) + aF ′′(ζ) − aF (ζ)
[
G′(ζ)

]2 + b1F (ζ)2 + b2F (ζ)3 = −λF (ζ)2m+1G′(ζ) + 3γF ′′(ζ)G′(ζ)

+ 3γF ′(ζ)G′′(ζ) + γF (ζ)G′′′(ζ) − γF (ζ)
[
G′(ζ)

]3 − αF (ζ)G′(ζ) + σ
{

F ′′′′(ζ) − 6F ′′(ζ)
[
G′(ζ)

]2
}

+ σ
{
−12F ′(ζ)G′(ζ)G′′(ζ) − 3F (ζ)

[
G′′(ζ)

]2 − 4F (ζ)G′(ζ)G′′′(ζ) + F (ζ)
[
G′(ζ)

]4
}

(13)

and

−wF ′(ζ) + 2aF ′(ζ)G′(ζ) + aF (ζ)G′′(ζ) = λ(2m + 1)F (ζ)2mF ′(ζ) + 2mθF (ζ)2mF ′(ζ)

+ αF ′(ζ) − γF ′′′(ζ) + 3γF ′(ζ)
[
G′(ζ)

]2 + 3γF (ζ)G′(ζ)G′′(ζ) + σ
[
4F ′′′(ζ)G′(ζ) + 6F ′′(ζ)G′′(ζ)

]

+ σ
{

4F ′(ζ)G′′′(ζ) + F (ζ)G′′′′(ζ) − 4F ′(ζ)
[
G′(ζ)

]3 − 6F (ζ)
[
G′(ζ)

]2
G′′(ζ)

}
. (14)

Now, Eqs. (13) and (14) will be used to retrieve soliton-like solutions of NLSE in the following subsections.
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3.1. Bright Soliton Solution to NLSE

By taking the following forms of F (ζ) and G(ζ), we get bright soliton solutions to NLSE (1):

F (ζ) = A sech(ζ)p, G(ζ) = Bζ, (15)

where A, B are the amplitude and width of the soliton. Balancing principle is applied to find p. By equating the
exponents (2m+1)p and p+2 and using (15) in (13), (14), we get p = 1/m. Also the solution of (1) becomes

q(x, t) = A sech
[
t(B2γ − α + γ) − x

]
exp

{
iB

[
−t(B2γ − α + γ) + x

]}
, (16)

where a = 2Bγ, b1 = 0, b2 =−B(A2λ + 2γ)
A2

, σ = 0, and θ =−3(A2λ + 2γ)
2A2

.

3.2. Dark Solitons and Other Solutions

On substituting G(ζ) = Bζ in (13), (14) and equating the coefficients equal to zero of linearly independent
functions, we have

σ =
γ

4B
, λ =

−2θ

3
, α = −2B2γ + 2aB − w, (17)

Then reduced ODEs (13) and (14) provides the following solutions to NLSE for m = 1:

q(x, t) =

[{
tanh

[
−1

2
B(−wt + x) + C1

]}2

C4 − C4

]
exp

[
iB(−wt + x)

]
, (18)

with a =
3γB

2
, b1 =

15B3γ

8C4
, and b2 =

B(45B2γ + 16C2
4θ)

24C2
4

;

q(x, t) =
1
4

B2(5γB − 4a) exp
[
i(−wt + x)B

]
b1

, (19)

with b2 =
2θB

3
;

q(x, t) =

[
35

{
tanh

[
−(i/6)(−wt + x)B + C1

]}4
γB3

216b1

−
35

{
tanh

[
−(i/6)(−wt + x)B + C1

]}2
γB3

108b1
+

35γB3

216b1

]
exp

[
i(−wt + x)B

]
, (20)

with b2 =
2θB

3
and a =

41γB

36
;

q(x, t) =

[{
tanh

[
− 1

20

√
10B(−tw + x) + C1

]}2

C4 + C3

]
exp

[
iB(−tw + x)

]
, (21)

with a =
5γB

4
, b1 =−23B3γ

800C3
, and b2 =

B(23B2γ + 1600C2
3θ)

2400C2
3

;

q(x, t) = C4 tanh
[
−1

2

√
2B(−wt + x) + C1

]
exp

[
iB(−wt + x)

]
, (22)

with a =
C2

4 (2θB − 3b2)
3B2

, b1 = 0, and γ = 0.
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4. CONCLUSIONS

The perturbed NLSE with QC nonlinearity was
studied in this paper with Lie symmetry and group
invariants. Bright and dark soliton solutions are re-
trieved. The perturbation terms included 3OD and
4OD. It must be noted that traveling wave hypothesis
and the method of undetermined coefficients fail to
retrieve soliton solutions to the perturbed NLSE with
these two perturbation terms included. Thus, this
integration scheme has a true edge over the other two.
Although semi-inverse variational principle retrieved
bright soliton solution to the model, it must be noted
that this method, although analytical, does not yield
an exact soliton solution [1]. Thus Lie symmetry
analysis still stands strong even today. The results
of this paper pave way to further research activities in
future.
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